MYARC

T.MA

MYARC
128K.0S
EXTENDED BASIC LEVEL IV

ET bk smres pase

VB wrranc i musss wame o |

Performs all of the same features as TI* Extended Basic)
Execulion upr 10 thiree: tirmes fastern

40 Character display 1exl mode.

Vastly improved error handling support!

mteger Yarahlest Now you can achiewve full support of
inmeder varables.

Winclonaing®
Hi Resolution Graphics! wWith commands such as DFEAW,

FILL CIRCLE, RECT., and many more, you Can poerornm
1asks with precision and speed never possible before!

® CALL MARGIN & CALL DRAMTO
® CALL POINT ® CALL WRITE
® CALL POINTSTAT * CALL GRAPHICS

& ancl miany TN

s oot d ek S0 | eans s, i

[text of front cover]

Myarc™
L] Performs all of the same features as TT* Extended BASIC!
L] Execution up to three times faster!
L] 40 Character display text mode
L] Vastly improved error handling support
L] Integer Variables! Now you can achieve full support of integer variables.
L] Windowing!
L] Hi Resolution Graphies! With commands such as DRAW, FILL, CIRCLE, RECT, and many more,
you can perform tasks with precision and speed never possible before!
L] CALL MARGIN L] CALL DRAWTO
L] CALL POINT L] CALL WRITE
L] CALL POINT L] CALL GRAPHICS
L] and many more

* TT is a registered trademark of Texas Instruments, Inc

MYARC Extended BASIC Il

IMPORTANT NOTICE REGARDING PROGRAMS AND BOOK MATERIALS

The following should be read and understood before purchasing and/or using MYARC Extended BASIC
IL

MYARC does not warrant that the programs contained in the MYARC Extended BASIC IT module and
accompanying book materials will meet the specific requirements of the consumer, or that the programs
and book materials will be free from error. The consumer assumes complete responsibility for any
decision made or actions taken based on information obtained using these programs and book materials.
Any statements made concerning the utility of MYARC's programs and book material are not to be
construed as express or implied warranties.

MYARC MAKES NO WARRANTY, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, REGARDING THESE PROGRAMS OR BOOK MATERIALS OR ANY
PROGRAMS DERIVED THEREFROM AND MAKES SUCH MATERIALS AVAILABLE SOLELY ON
AN "AS IS" BASIS.

IN NO EVENT SHALL MYARC BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN PROGRAMS OR BOORMATERIALS, AND THE
SOLE AND EXCLUSIVE LIABILITY OF MYARC, REGARDLESS OF THE FORM OF ACTION, SHALL
NOT EXCEED THE PURCHASE PRICE OF THIS MODULE. MOREOVER, MYARC SHALL NOT BE
LIABLE FOR ANY CLAIM OF ANY KIND WHATSOEVER AGAINST THE USER OF THESE
PROGRAMS OR BOOK MATERIALS BY ANY OTHER PARTY.

Some states do not allow the exclusion or limitation of implied warranties or consequential damages, so
the above limitations or exclusions may not apply to you.

COPYRIGHT

Copyright © 1985 by MYARC, INC. All rights reserved. No part of this publication may be reproduced
without the prior written permission of MYARC, INC., P.O. Box 140, Basking Ridge, N.J. 07920

DISCLAIMER OF WARRANTY

MYARC, INC. makes no representation of warranties with respect to the contents hereof, and specifically
disclaims any implied warranties of merchantability or fitness for any particular purpose. MYARC, INC.
software is sold or licensed "as is". The risk as to its quality and performance is with the buyer and not
MYARC, INC. Further, MYARC reserves the right to revise the publication and to make changes in the
content hereof without obligations of MYARC to notify any person of such revisions or changes. MYARC
also reserves the right to make design revisions or changes without obligations of MYARC to notify any
person of such revisions or changes.

TEXAS INSTRUMENTS
HOME COMPUTER

MYARC Extended BASIC Il

For The
TI-99/4A Home Computer

IMPORTANT

MYARC Extended BASIC II performs with more power, speed and sophistication than
TI Extended BASIC, and therefore requires a larger random access memory (RAM) than
does TI Extended BASIC.

A high-performance memory expansion with a minimum of 128 Kbytes of RAM such as
MYARC's 128, or 512 Kbyte MEXP-1 Memory Expansion must be used with this
advanced programming system. MYARC's high-performance Cards* have been especially
designed for maximum speed and trouble-free operation with MYARC Extended BASIC
IL

PLEASE NOTE
NOT ALL LARGE-CAPACITY MEMORY EXPANSION CARDS

ARE ADEQUATELY DESIGNED TO FULLY FUNCTION
WITH MYARC Extended BASIC II.

* MYARC's 128, and 512 Kbyte MEXP-1 Memory Expansion Cards also provide RAM-disk and Print
Spooler functions.

MYARC Extended BASIC Il

Table of Contents

1. INTRODUCTION e e e e e e et e 1

2. FEATURES OF MYARC Extended BASICII i 2

2.1. Expanded and Enhanced Graphic Command Set. 2
2.2. New Graphic Modes.ottt e e ettt e 2
2.3. Additional Graphic Commands it 2
2.4. Graphic Enhancements i e
2.4.1. ENLARGED CHARACTER SET i
2.4.2. INCREASED NUMBER OF COLOR SETS.
2.4.3. NUMBER OF SPRITES e e
2.44. SPRITE CONTROL e e e e 4

3. SET-UP INSTRUCTIONS e e e e e ettt 5

3.1. Memory EXpansionttt e e 5
3.2. Powering Up 5

4. REFERENCE SECTION e e e

6
4. 1. ABS 7
4.1.1. Format 7
4. 0.2, TYPe . 7
4.1.3. Description 7
4.1.4. EXampleso e 7
4.2, ACCE P T . .. e 8
4.2 1. Format 8
422 . CrossReference i 8
4.2.3. Description 8
42,4, OPtioNS ...ttt 9
42,5, Examples e 10
4.2.6. Program e e 11
4.8, ASC e 12
4.3.1. Format 12
4.3.2. CrossReference 12
4.3.3. Description e e 12
4.3.4. Examples e 12
A4, AN e 13
44.1. Format 13
44.2. CrossReference i e 13
4.4.3. Description e 13
44,4, ExXamPles . ..o e e 13
4.5. BREAK ... 14
45.1. Format 14
45.2. CrossReference 14
4.5.3. Description e 14

TEXAS INSTRUMENTS

HOME COMPUTER
454, Breakpoints e e 14
4.5.5. Removing Breakpoints 15
4.5.6. BREAK Errorst 15
4.5.7. Examples 16
4.6. BYE .. 17
4.6.1. Format 17
4.6.2. Description e 17
4.7, CALL .. e e 18
4.7 0. Format e e 18
4.72.Cross Reference i e 18
4.7.3. Description e 18
4.74. Program 19
4.8. CHAR subprogramiiiiiiiii ettt e ettt 20
4.8.1. Format 20
4.82.CrossReference i e 20
4.8.3. Description 20
4.8.4. Pattern and High-Resolution Modes 21
485 . Text Mode 21
4.8.6. Character Definition — The Pattern String 21
4.8.7. Programs 23
4.9. CHARPAT subprogramuiiiiie ettt e 25
4.9.1. Formato e e 25
4.9.2. CrossReference i e 25
4.9.3. Description e e 25
4.9.4. Example e e 25
4.10. CHARSET subprogram — Set Characters 26
4.10.1. Format e 26
4.10.2. Cross Reference i e 26
4.10.3. Descriptionttt e 26
4.11. CHRS function — Character 27
4.11.1. Format e 27
4102, YD vttt e 27
411.8.CrossReference e 27
4.11.4. Descriptionttt e e e 27
4.11.5. EXamples e 27
4.11.6. Program e 28
4.12. CIRCLE SUbProgramiitt ittt ettt et e e e 29
4.12. 1. Formato e e 29
4.12.2. Crossreferencettt e e 29
4.12.3. Description ittt e e 29
4.12.4. Example e e 30
4.13. CLEAR sUbprogramutiiueii it et e 31
4.13. 1. Format e 31
4.13.2. Cross Reference i 31
4.13.3. Description i e e 31

MYARC Extended BASIC Il

4184, Programsttt e 31

4.14. CLOSE . .o e 33
4.14. 0. Format 33
4.14.2.Cross Reference i e 33

4.14.8. Description e 33

4.14.4. Closing Files Without the CLOSE Instruction 34

4045, KxamPles . ..o e e 34
4.14.5.1. Cassette File i, 34

414.5.2. Diskette File 34

4.15. COINC subprogram — Coincidencettt 35
415 1. Format e 35
4.15.2.Cross Reference i e 35

4.15.8. Description e 35

4.15.4. TWO SPIItesttt e e e 36

4.15.5. A Spriteand a Screen Pixel 36

4.15.6. ALl Sprites 37

4057, Program e 37

4.16. COLOR subprogram e 38
4.16.1. Format e 38

4.16.2. Cross Reference i e e 38

4.16.3. Description it e 38

4.16.4. Pattern Mode i e 39

4.16.5. Text Mode i e e e e e 39

4.16.6. High-Resolution Mode i 39

4.16.7. SPIIteS . .ttt e 39

4.16.8. Examplest e e 40

4.16.9. Program e e 40

4.17. CONTINUE e e e e e e e e i 41
417 1. Format e 41

4.17.2. Cross Reference i 41

4.17.8. Descriptiont e e 41

4.18. COS function — CoSINe\ttt e et e e s 42
4.18. 1. Format e 42

O 30 1 o Y 42
4.183.CrossReference e 42

4.18.4. Descriptionttt e e 42

4.18.5. Program e 42

4.19. DAT A 43
4.19.1. Format e 43

4.19.2. Cross Reference i e 43

4.19.8. Descriptiont e 43

4.19.4. Program e e 44

4.20. DCOLOR subprogram— Draw Color 45
4.20.1. Format 45
4.20.2.Cross Reference e 45

TEXAS INSTRUMENTS

HOME COMPUTER
4.20.3. Description e 45
4.20.4. Programs 45
421.DEF — Define Function it 47
4.21.1. Format 47
4.21.2. Description e 47
4.21.3. DEF without parameters 47
4.21.4. DEF with Parameters i 48
4.21.5. Recursive Definitions 48
4.21.6. EXamples e 48
4.21.7. Programs 49
4.2, DEFIN T .. e 50
4.22.1. Format 50
4222 . CrossReference 50
4.22.3. Description 50
4.23. DELETE . .. e 51
4.23.1. Format 51
423.2.CrossReference 51
4.23.3. Description 51
4.23.4. Example e 51
4.23.5. Program 51
4.24. DELSPRITE subprogram — Delete Sprite 52
4.24.0. Format e 52
424.2.CrossReference e 52
4.24.3. Description e 52
4.24.4. Delete Specific Sprites e 52
4.24.5. Delete All Spritesi i e e 52
4.24.6. EXamPles e 52
4.25. DIM — Dimensionutuute ettt ettt e ettt 53
4.25. 1. Format e 53
4.25.2. Cross Reference i 53
4.25.8. Description e 53
4.25.4. Referencing an Arrayo.uiiti ittt 54
4.25.5. Reserving Space for Arrays 54
4.25.6. Examples e 54
4.26. DISP LAY ... 55
4.26.1. Format e 55
4.26.2.Cross Reference i 55
4.26.3. Description e e 55
4.26.4. OptionS . ..o e 56
4.26.5. Examplest e e 56
4.26.6. Program e 57
4.27. DISPLAY USING i e e e e e e e e e i 58
4.27. 1. Format e 58
4.272.Cross Reference i 58

4.27.8. Descriptiont e 58

MYARC Extended BASIC Il

427 4, ERaMPIES . .ot e 58
4.28. DISTANCE subprogramiuutti it 59
4.28.1. Formato 59
4.28.2.Cross Reference i e 59
4.28.3. Description e 59
4.28.4. TWO SPIites . ..ttt e e e 59
4.28.5. ASpriteand aScreen Pixel 60
4.28.6. Examples 60
4.29. DRAW SUDPTIOgramttt e e ettt e e et e 61
4.29.1. Format 61
429.2. CrossReference e 61
4.29.3. Description 61
4.29.4, Programsttt ittt e e e 62
4.30. DRAWTO SUBPIrogramutitiiiiie ettt e ettt iieee e 63
4.30.1. Format e 63
4.30.2.Cross Reference 63
4.30.3. Descriptiont e 63
4.30.4. Program 64
4,31 END .. 65
4.31.1. Format 65
4.31.2.CrossReference e 65
4.31.3. Description 65
4.32. EOF .. 66
4.32.1. Format e e 66
4.32.2. TyPe . . e 66
4.32.3.Cross Reference i 66
4.32.4. Descriptiont e 66
4.32.5. Examples e e 67
4.33. ERR subprogram — Error 68
4.33.1. Format 68
4.33.2.Cross Reference e 68
4.33.3. Description e 68
4.33.4. OptionS ... e 69
4.33.5. Examples e 69
4.33.6. Program e 69
4.34. EXP function — Exponential 70
4.34.1. Format e 70
4,342, TYP ittt e 70
4.34.3.CrossReference e 70
4.34.4. Descriptiont e e 70
4.34.5. EXamples e 70
4.35. FILL SUbProgramttt ettt ettt e et ee s 71
4.35. 1. Format e 71
4.35.2. Cross Reference i 71
4.35.3. Descriptiont e e 71

TEXAS INSTRUMENTS

HOME COMPUTER
4.35.4. Program e 72
4.36. FOR TOo e e e e e e 73
4.36.1. Format 73
4.36.2. Cross Reference i e 73
4.36.3. Description e 73
4.36.4. FOR-NEXT Loop Execution it 73
4.36.5. Specifications e 74
4.36.6. Nested FOR-NEXT LOOPS . ..o ittt e 74
4.36.7. FOR TO as a Program Statement 75
4.36.8. FORTO asaCommandoiuiiiimiiiiitneaiineannns 75
4.36.9. Examples e 75
4.36.10. Program 76
4.37. FREESPACE function it 71
4.37.1. Format 77
S N Ny o T 77
4.37.3. Description 77
4.37.4. Garbage Collection i 77
4.37.5. Example 77
4.38. GCHAR subprogram — Get Character, 78
4.38.1. Formato e e e 78
4.38.2.Cross Reference i 78
4.38.3. Description 78
4.38.4. Pattern and Text Modes i, 78
4.38.5. High-Resolution Mode i 79
4.38.6. Examples e 79
4.39. GOSUB — GotoaSubroutine ittt 80
4.39.1. Format e 80
4.39.2. Cross Reference i e 80
4.39.3. Description i e e 80
4.39.4. Nested Subroutinesiitiitiiiniiiiinnnnnn. 80
4.39.5. Example e 81
4.39.6. Program 81
4.40. GOTO ..o 82
4.40.1. Format e e 82
4.40.2.Cross Reference e 82
4.40.3. Descriptionttt e e 82
4.40.4. Programottt e 82
4.41. GRAPHICS subprogram ittt et e 83
4.41.1. Format e e 83
441.2. Cross Reference i i e 83
4.41.3. Descriptiont e e 83
441.4. Pattern Mode i e e 84
4.41.5. Text Mode i e e e e e e 85
4.41.6. High Resolution Mode i 85

4.41.7. A Note on High Resolution Graphics 85

MYARC Extended BASIC Il

4.41.8. Example e e 86
4.42. HCHAR subprogram — Horizontal Character 87
442 1. Format 87
4.42.2.Cross Reference i e 87
4.42. 8. Description e 87
4424 . Examples 88
443. TF THEN ELSE e e e e e et 89
443.1. Format 89
4.43.2. Descriptiont e 89
4.43.3. Examples 90
4434, Programttt e e 91
4.44. IMAGE 92
444 1. Format e 92
4.44.2.Cross Reference i e 92
4.44.3. Description e 92
4444 Format-Fields 93
4445, Examples e 94
4.44.6. Programs 95
4.45. INIT subprogram — Initialize i 96
4.45. 1. Format 96
445.2.CrossReference e 96
4.45.3. Description 96
4454, EXampPles e 96
4.46. INPUT e e 97
4.46.1. Format e 97
4.46.2. Cross Reference i e 97
4.46.3. Descriptiont e e 97
4.46.4. Input from the keyboard 98
4.46.5. EXamples e 99
4.46.6. Program e 99
446. 7. InputfromaFile 100
4.46.8. ExXamplest e 101
4.46.9. Program 102
447, INT function — Integer it e i i 103
447 1. Format e 103
T o T 103
4.47.3. Descriptiont e 103
4474, EXampPlest e 103
4.48. JOYST subprogram — Joystick 104
4.48. 1. Formato 104
4.48.2. Descriptiont e 104
4.48.3. Example e e 104
4.48.4. Programmlttt e 104
4.49. KEY SUbProgramottt e e e e 105
4.49.1. Format e 105

TEXAS INSTRUMENTS

HOME COMPUTER
4.49.2. Description 105
4.49.3. Key-Unit Optionsiiiit i it 105
4.49.4. Status oo 106
4495 . Example 106
4.49.6. Program e 106
4.50. LEN function — Length e 107
4.50.1. Format 107
4.50.2. TYP . i ittt 107
4.50.3. Description e 107
4.504. Examples 107
4 DL, LT 108
451.1. Format 108
4.51.2. Descriptionttt e 108
451.3. Examples 108
4514, Programt e 109
4.52. LINK subprogram e 110
452, 1. Format e 110
4522 . CrossReference 110
4.52.8. Description e 110
4524 . Example 110
4.53. LINPUT — Line Input e et e e 111
4.53. 1. Format 111
453.2.CrossReference 111
4.53.3. Description e e 111
4.53.4. EXamples e 112
4.53.5. Program e e 112
454, LIS .o 113
4.54. 1. Format e 113
4.54.2. Descriptiont e 113
4.54.3. The Line-Number-Range i, 114
4.54.4, EXampPles e 114
4.55. LOAD sSUbProgramtiutii ettt et e e 115
455 1. Format e 115
4.55.2. Cross Reference i 115
4.55.8. Descriptiont e 115
4.55.4. The Loader it e 117
4.56. LOCATE Subprogram ittt et e e iiee e 118
4.56.1. Format 118
456.2.Cross Reference 118
4.56.3. Description e 118
4.56.4. Program e 118
4.57. LOG function — Natural Logarithm 119
457 1. Format e 119
S T 1 o T 119

4.57.3. Cross Reference e 119

MYARC Extended BASIC Il

4.58.

4.59.

4.60.

4.61.

4.62.

4.63.

4.64.

4.65.

4574, Description e 119
4.57.5. Examples 119
4. 57.6. Program e 119
MAGNIFY subprogramttt et e 120
4.58. 1. Format 120
4.58.2.Cross Reference i 120
4.58.3. Description 120
4.58.4. Single-Sized Sprites e 120
4.58.5. Double-Sized Sprites e 121
4.58.6. Unmagnified Spritest e 121
4.58.7. Magnified Sprites i e 121
4.58.8. Program 122
MARGINS subprogramitiiiiii et 123
4.59.1. Format 123
459.2. CrossReference 123
4.59.3. Description 123
4,594, Examplest e 124
MAX function — Maximum 125
4.60.1. Format e 125
4.60.2. TYPE . .ttt e 125
4.60.3.Cross Reference 125
4.60.4. Description 125
4.60.5. EXamples e 125
MERGE . .. e 126
4.61.1. Format 126
4.61.2.Cross Reference i 126
4.61.3. Description it e 126
4.61.4. Example e 126
4.61.5. Program e 127
MIN function — Minimum i e e 128
4.62.1. Format e 128
4,62, 2. TYPe . oottt 128
4.62.3.CrossReference 128
4.62.4. Descriptionttt e 128
4.62.5. EXampPles e 128
MOTION SUDPIrOgramtiit ettt et ettt 129
4.63.1. Format e 129
4.63.2. Cross Reference i 129
4.63.3. Descriptiont e 129
4.63.4. Program e 130
NEW 131
4.64.1. Formato 131
4.64.2. Descriptiont e 131
NE X T . e e e e e e e 132

4.65.1. Format 132

TEXAS INSTRUMENTS

HOME COMPUTER
4.65.2.Cross Reference i 132
4.65.3. Description 132
4.65.4. Program e 132
4.66. NUMBER 133
4.66.1. Format 133
4.66.2. Description 133
4.66.3. Special Editing Keys in Number Mode 134
4.66.4. Example 135
4.67. OLD ... 136
4.67.1. Format 136
467.2.CrossReference 136
4.67.3. Description 136
4.67.4. Protected and Unprotected Programs 136
4.67.5. Examples 137
4.68. ON BREAK e e e 138
4.68.1. Format 138
4.68.2.CrossReference 138
4.68.3. Description 138
4.68.4. Programt e 139
4.69. ON ERROR e e 140
4.69.1. Format e 140
4.69.2. Cross Reference i e 140
4.69.3. Descriptiont e 140
4.69.4. Program e 141
4.70. ON GOSUB e e e e 142
4.70.1. Formato e 142
4.70.2. Cross Reference e 142
4.70.3. Descriptiont 142
4.70.4. EXampPlest e 142
4.70.5. Program e 143
4.71. ON GOT O ..o e e e e e e 144
4711, Formato 144
4.71.2.Cross Reference 144
4.71.3. Descriptiont 144
4.71.4. EXamPles e 144
4,715, Program e 145
4.72. ON WARNING e e e e e e e e 146
4.72. 1. Format 146
4.72.2. Descriptiont e 146
4,728, Program e 147
4.78. OPEN . . 148
4.73.1. Format 148
4.73.2.Cross Reference 148
4.73.3. Descriptionttt 148

4.78.4. OptionS ..ot 149

MYARC Extended BASIC Il

4.73.5. KxamPles e 151
4.73.6. Program 151
4.74. OPTION BASE e e e e 152
4.74.1. Format 152
4.74.2. Cross Reference i 152
4.74.3. Description 152
4744, KxamMPle e e 152
4.75. PATTERN SUDProgramiiuuteit e tea e 153
475, 1. Format e 153
4.75.2. Cross Reference i 153
4.75.8. Description e 153
4.75.4. Program 154
4.76. PEEK subprogram — Peek at CPURAM 155
4.76.1. Format 155
4.76.2. Cross Reference 155
4.76.3. Description 155
4.76.4. KXampPlest e 156
4.76.5. Program 156
4.77. PEEKV Subprogram — Peekat VDP RAM 157
4.77. 0. Format 157
4.77.2.Cross Reference 157
4.77.3. Description 157
4774, Example e 157
4775, Programsttt e 158
4.78. Pl function — Pi 159
4.78.1. Format 159
478, 2. TyPe . . e 159
4.78.3. Descriptiont e 159
4.78.4. Example e 159
4.79. POINT SUDPIrOgramttt ettt et et et e 160
4.79.1. Format e 160
4.79.2. Cross Reference i 160
4.79.8. Descriptiont e 160
4.79.4, Example e e 161
4.80. POKEV subprogram — Poketo VDP RAM 162
4.80.1. Formato 162
4.80.2. Cross Reference i 162
4.80.3. Descriptionttt e 162
4.80.4. EXamPlest e 163
4.80.5. Program e 163
4.81. POS Function — Position e e 164
4.81.1. Formato 164
4812, TyPe . .t e 164
4.81.3. Description it e e 164
4.81.4. ExXamplest 165

TEXAS INSTRUMENTS

HOME COMPUTER
4,815, Program e 165
4.82. POSITION SUDPIrOSIamuuiit ettt et et e aieeanns 166
4.82.1. Format 166
4.82.2.Cross Reference i 166
4.82.3. Description e 166
4.824. Example 166
4.83. PRINT ... 167
4.83.1. Format 167
4.83.2.CrossReference 167
4.83.3. Description 167
4.83.4. Printingtothe Screen i 167
4.83.5. PrintingtoaFile 168
4.83.6. Printing Numbers: INTERNAL Files 168
4.83.7. Printing Numbers: The Screen and DISPLAY Files 169
4.83.8. Printing Strings e 170
4.83.9. Print Separators 170
4.83.10. Examples e 171
4.83.11. Program 172
4.84. PRINT USINGt e e e e e e e e 173
4.84.1. Formato 173
4.84.2.Cross Reference 173
4.84.3. Description 173
4.84.4. EXamPles e 174
4.85. RANDOMIZE 175
4.85.1. Format 175
4.85.2.Cross Reference i 175
4.85.3. Descriptiont e 175
4.85.4. Program e 175
4.86. READ e 176
4.86.1. Format 176
4.86.2. Cross Reference i 176
4.86.3. Descriptiont 176
4.87. REAL ... 177
4.87.1. Format 177
4.87.2.CrossReference 177
4.87.3. Descriptionttt e e 177
4.87.4. EXamPles e 178
4.88. REC function — Record Number 179
4.88.1. Format e 179
4,882, Ty . it e 179
4.88.3. Descriptiont e 179
4.88.4. Example e 179
4.88.5. Program e 180
4.89. RECTANGLE subprogramttt 181

4.89.1. Format 181

MYARC Extended BASIC Il

4.90.

4.91.

4.92.

4.93.

4.94.

4.95.

4.96.

4.97.

4.89.2.Cross Reference i 181
4.89.3. Description 181
4.89.4. Program e 183
REM —Remark 184
4.90.1. Formato 184
4.90.2. Description 184
4.90.3. Trailing Remarks i 184
4.904. Example 184
RESEQUENCE e e e e 185
4.91.1. Format 185
4.91.2. Descriptionttt e 185
4.91.3. Examples 185
RESTORE . ..o 186
4.92.1. Format 186
4922 . CrossReference 186
4.92.3. Description 186
4.92.4,. RESTORE with DATA and READ Statements 186
4925 . RESTORE withaFile... 187
4.92.6. EXamples 187
RETURN .. e e e e e 188
4.93.1. Format e 188
4.93.2. Cross Reference i 188
4.93.3. Descriptiont e 188
4.93.4. RETURN with GOSUBand ONGOSUB 188
4.93.5. RETURN with ONERROR 188
4.93.6. Programs e 189
RND function — Random Number 191
4.94. 1. Formato 191
4,942, TyPe . . e 191
4.94.3. Cross Reference i 191
4.94.4. Descriptionttt e 191
4.94.5. Examplest 191
RPTS$ function — Repeat String it 192
4.95. 1. Format 192
4,952, TyPe . . e 192
4.95.3. Description e 192
4.95.4, EXamPlest e 192
RUN L e e 193
4.96.1. Format e 193
4.96.2. Descriptiont e e 193
4.96.3. Examples e 194
4.96.4. Program 195
SAV E L e 196
4.97. 0. Format e 196

4.97.2. Cross Reference 196

TEXAS INSTRUMENTS

HOME COMPUTER
4.97.8. Description 196
4.974. Examples 197
4.98. SAY SUDPTrOgramttt e 198
4.98.1. Format 198
4.98.2. Cross Reference i 198
4.98.3. Description 198
4.98.4. ExamPlest e 198
4.98.5. Program 199
4.99. SCREEN Subprogram ittt 200
4.99.1. Format 200
4.99.2.CrossReference 200
4.99.3. Description 200
4.99.4, Examples e 200
4.99.5. Program 201
4.100. SEG$ function — String Segment 202
4.100.1. Format 202
4.100.2. TYPe . oottt 202
4.100.3. PUurpose 202
4.100.4. EXamples e 202
4.101. SGN function — Signum (SigN) it e 203
4.101.1. Format 203
41012, TYPE vttt 203
4.101.8. Descriptionttt e 203
4.101.4. ExXamplesttt e 203
4.102. SIN function — SIne i e 204
4.102.1. Formato e 204
4102, 2. TYPe . oot 204
4.102.3. Cross Reference i i 204
4.102.4. Descriptionttt e 204
4.102.5. Program e 204
4.103. SOUND SUDPIOZIamot it ettt it et et e et et et aee s 205
4.103.1. Formato e 205
4.108.2. Descriptiont e 205
4.103.8. Examplesot e e 206
4.103.4. Programot 206
4.104. SPGET subprogram — Get Speech 207
4.104.1. Format e 207
4.104.2. Cross Reference e 207
4.104.3. Descriptionttt e 207
4.104.4. Programt e 207
4.105. SPRITE subprogram ittt e e et e iiiee e 208
4.105.1. Format e e 208
4.105.2. Cross Reference i 208
4.105.3. Descriptionttt e 208
4.105.4. Sprite Specifications e 209

MYARC Extended BASIC Il

4.106.

4.107.

4.108.

4.109.

4.110.

4.111.

4.112.

4.113.

4.105.5. Sprite Motion i 210
4.105.6. Program i 210
SQR function — Square Root 214
4.106.1. Format 214
4.106.2. TyPe . .ot 214
4.106.3. Description 214
4.106.4. Examplesttt e 214
ST O .o 215
41071, Format e 215
4.107.2. Cross Reference i 215
4.107.8. Descriptiont e 215
4.107.4. Program 216
STR$ function— String-Number 217
4.108.1. Format 217
4.108.2. TYPe . et 217
4.108.3. Cross Reference 217
4.108.4. Descriptiont e 217
4.108.5. Examples 217
SUB — Subprogramii ettt e 218
4.109.1. Format e e e e 218
4.109.2. Cross Reference i 218
4.109.3. Description 218
4.109.4. Subprogram Variables 219
4.109.5. Parametersttt e 219
4.109.6. Passing Parameters by Reference and Value 220
4.109.7. Examplesttt e e e 220
4.109.8. Program it 221
SUBEND — Subprogram End 222
4.110.1. Format e 222
4.110.2. Cross Reference i i 222
4.110.8. Descriptionttt 222
SUBEXIT — Subprogram Exit 223
4.111.1. Format e 223
4.111.2.Cross Reference i i 223
4.111.8. Descriptionttt e e 223
TAB function — Tabulate 224
4.112.1. Format e 224
4.112.2.Cross Reference i i 224
4.112.8. DesCriptionttt 224
41124, ExampPlesttt e 225
TAN function — Tangent e e 226
4.113.1. Format e e 226
4.118.2. TyPe . ot 226
4.113.3.Cross Reference i 226

4.118.4. Descriptionttt 226

TEXAS INSTRUMENTS

HOME COMPUTER
41185, Program e 226
4.114. TERMCHAR function — Termination Character 227
4.114. 1. Format 227
4.114.2. TYPe . et 227
4.114.3. Cross Reference 227
4.114.4. Description 227
41145, Programt e 228
4.115. TRACE . . .o 229
4.115.1. Format 229
4.115.2. Cross Reference 229
4.115.8. Descriptiont e 229
4.115.4. Programs 229
4.116. UNBREAK 230
4.116.1. Format 230
4.116.2. Cross Reference 230
4.116.3. Description 230
4.116.4. Examplest e 231
4.117. UNTRACE 232
4.117.1. Format 232
4.117.2. Cross Reference i 232
4.117.8. Descriptiont e 232
4.1174. Examples 232
4.118. VAL function — Value 233
4.118.1. Format 233
41182, TyPe . et e 233
4.118.3. Cross Reference i 233
4.118.4. Descriptionttt e e 233
4.118.5. Example e e 233
4.119. VALHEX function — Value of Hexadecimal Number 234
4.119.1. Format 234
4.119.2. Type . .ot 234
4.119.8. Descriptionttt e e 234
4.119.4. EXamplest e 234
4.120. VCHAR subprogram — Vertical Character 235
4.120.1. Format 235
4.120.2. Cross Reference i 235
4.120.8. Descriptionttt e e 235
4.120.4. EXamplesttt e e 236
4.121. VERSION SUbProgramttt ittt et e 237
4.121.1. Format 237
4.121.2. Descriptiont e 237
4.121.8. Example 237
4.122. WRITE subprogram ittt e e 238
4.122.1. Format 238

4.122.2. Cross Reference 238

MYARC Extended BASIC Il

4.122.8. DesCriptiont e 238
4.1224. Example 238
5. APPENDICES 239
Appendix A. Commands, Statements, and Functions 240
MYARC Extended BASIC II COMMANDS i, 240
MYARC Extended BASIC Il STATEMENTS i, 241
MYARC Extended BASICII FUNCTIONS 241
Appendix B. ASCIT Codesoit i e e e e e e e e 242
Appendix C. Musical Tone Frequencies i, 244
Appendix D. Character Sets i e 245
Appendix E. Pattern Identifier Conversion Table 246
Appendix F. Color Codes e e e e e 247
Appendix G. Mathematical Functions 248
Appendix H. List of Speech Words 249
Appendix I. Adding Suffixes to Speech Words 252
Appendix d. Brrors 257
Appendix K. High-Resolution Mode iii.... 263
6. ADDEN DU S ... 264
6.1. Addendum 1. MYARC Extended BASIC Version 2.11 264
6.1, 1. CLS .. e 264
6.1.2. RUN "FILE-NAME", CONTINUE 264

6.1.3. PWD — PRINT WORKING DIRECTORY, AND
CHDIR — CHANGE WORKING DIRECTORY 264
6.1.4. OLD/SAVE/RUN e e e e e e 265
6.1.5. SIZE . . . 265
6.1.6. FREESPACKE 265
6. 1. 7. LIS T . . 265
6.1.8. MARGINS 265
6.1.9. REAL 266
6.1.10. RECTANGLE e e e 266
6.1 1L FILL . ..o e 266
6.1.12. GRAPHICS(3) MODE e e 266
6.1.18. L P4, L P- L P 266
6.1.14. CALL SAY ... 266
6.1.15. DEF . .. 266
6.1.16. RUN and OLD e e e e 267
6.1.17. Extended BASICIIRAM Usagettt 267
6.1.17.1. EXTENDED BASICII CRAMMAP 267
6.1.17.2. EXTENDED BASICII VRAMMAP 268
6.1.17.3. EXTENDED BASICIIVREGMAP 269
6.1.18. ASSEMBLY LANGUAGE USAGE 269
6.1.19. ASSEMBLY LANGUAGE SUPPORT i, 269

6.1.20. UTILITIES AND DEMONSTRATION PROGRAM 270

TEXAS INSTRUMENTS

HOME COMPUTER
6.2. Addendum 2. EPROM Installation Instructions 271
6.2.1. REMOVING EPROM FROM CIRCUITBOARD 272
6.2.2. INSERTING THE REPLACEMENT EPROM 272
6.2.3. REPLACING THE CIRCUIT BOARD INTO THE CLAMSHELLS 273
6.2.4. NOTICE e e e e e 273
7. SERVICE INFORMATION e e e et 274
7.1.In Case of Difficulty e e e 274
7.2. If You Have Questions or Need Assistancec.c.ouiiiiiiiiiinnnannnn. 275
8.90-DAY LIMITED WARRAN T Y ... e e e e e 276
8.1. Warranty Duration 276
8.2. Warranty Coveragettt e e e e 276
8.3. Warranty Disclaimers 276
8.4.Legal Remedies e e 276
8.5. Warranty Performance 277

MYARC Extended BASIC Il

1. INTRODUCTION

In this manual we assume that you have a working knowledge of TI Extended BASIC and that you are
experienced in programming.

Since there are numerous additions to, and improvements over TI Extended BASIC, we recommend that
you read this entire manual before using MYARC Extended BASIC II. The many examples, programs,
and appendices can be very useful for practice and review.

MYARC's Extended BASIC II is an improved programming language. Its new features add significant
capabilities and power to TI Extended BASIC. Program operation and execution is up to four times faster.

MYARC Extended BASIC II improvements include the following:

L] INT
This function returns the largest integer not greater than the value of the numeric-expression.
If the value of the numeric-expression is an integer, INT returns the value of the
numeric-expression itself. If the numeric-expression is not an integer, INT returns the largest
integer not greater than the numeric-expression.

L] DEFINT
A new instruction enabling you to declare the data-type of specified numeric variables as
DEFINT. DEFINT variables are processed faster and require less memory than do real, or double
precision floating point numbers. If DEFINT is not specified, double precision floating point
variables will be used. These variables have a greater range of values than DEFINT variables and
may contain decimal portions. A numeric variable of the DEFINT data-type is a whole number
greater than or equal to -32768 and less than or equal to 32767.

L] CALL GRAPHICS
A subprogram which gives you the option of having either a 32 or 40 column node. With a 32
column mode, there will be 2 columns of margin on each side and 28 columns between. With the
40 column mode, the margins remain the same, but with 36 columns between.

L] CALL MARGINS
This subprogram allows the margins to be removed and screen windows to be specified.

n TERMCHAR

This function returns the character code of the key pressed to exit from the previously executed
statement. f TERMCHAR is used as part of a command, the value returned depends upon which
key was pressed to enter the command (ENTER, UP ARROW, or DOWN ARROW).

=

TEXAS INSTRUMENTS
HOME COMPUTER

2. FEATURES OF MYARC Extended BASIC I

2.1. Expanded and Enhanced Gra phic Command Set.

MYARC Extended BASIC II dramatically increases the graphics capabilities of your computer. By
enhancing already existing Extended BASIC commands and allowing programmer access to standard,
text, and bitmap (high-resolution) modes you now have the capabilities of a professional graphics
development system.

2.2. New Graphic Modes.

Previously, you could create and run your Extended BASIC programs only in the standard "pattern"
mode. This provided you with sprites, color sets, and a 28/32 column by 24 row screen display.

L] TEXT MODE
Text Mode differs from Pattern Mode by giving you a 40 column by 24 row screen display to work
with. If you are using a standard TV for display, you will note that all 40 columns are visible. (In
the standard mode usually the first and last 1 or 2 columns are lost.)

Text Mode is most useful in data/word processing, text manipulation, and utility programs not
requiring exotic graphics. (Sprites and color sets do not exist in Text Mode.)

HIGH-RESOLUTION MODE

High-Resolution Mode (Bitmap Mode) is a high resolution graphics mode which allows placing
or locating individual pixels. In contrast, Pattern Mode only allows you to control screen display
by placing characters on the screen. If you've used the command "CALL CHAR" to define your
own characters before, you know that each character is made up of many dots that are on or off.
A standard character is made up of 64 of these dots. In High-Resolution Mode, each of these dots
(referred to as pixels), can be directly placed on the screen. Any group of 4 pixels can be made to
be any one of the available colors. The screen display is now 256 columns by 192 rows. Add to this
the ability to use sprites, and you begin to see the potential.

2.3. Additional Gra phic Commands

Additional commands are provided to most effectively utilize these new capabilities. For example, in
High-Resolution Mode — CALL DRAW, CALL DRAWTO, CALL FILL, CALL CIRCLE CALL
RECTANGLE, CALL POINT, CALL GCHAR (in High-Resolution Mode), and CALL WRITE, along with
most of the already existing Extended BASIC commands, provide a medium previously found only in the
most complex assembly language programs.

MYARC Extended BASIC Il

The summary provided below highlights the capabilities of the new graphic commands:

CALL DRAW
Draws, erases or inverts a line from a user defined point to another user-defined point.

CALL DRAWTO
Draws, erases or inverts a line from the last point drawn to a user-defined point.

CALL CIRCLE
Draws, erases or inverts a circle around a specified point with a radius of up to 340 pixels.

CALL POINT
Draws erases or inverts a simple user-defined point (pixel).

CALL RECTANGLE
Draws, erases or inverts squares or rectangles, solid or hollow, from a 1 dot square to a 256 by
192 pixel rectangle.

CALL FILL
Fills in a shape of any dimensions (within the screen boundaries) with a user-defined pattern.

CALL GCHAR

Returns a value indicating whether the point specified was turned off or turned on.

CALL WRITE
Allows text and predefined characters to be placed on the screen at a specified point.

CALL DCOLOR
Defines the current foreground and background colors used in the special High-Resolution Mode
graphic commands.

CALL GRAPHICS

Allows access to and from the 3 graphic modes.

TEXAS INSTRUMENTS
HOME COMPUTER

2.4. Graphic Enhancements
2.4.1. ENLARGED CHARACTER SET

The predefined and user defined character set has been enlarged from 112 characters (32-143) to 256
characters (0-255).

2.4.2. INCREASED NUMBER OF COLOR SETS.

The number of character color sets has been proportionately increased from 15 sets to match the
increased size of the character set. This gives a total of 33 color sets.

2.4.3. NUMBER OF SPRITES

The number of sprites available for use is increased to 32.

2.4.4. SPRITE CONTROL

CALL COINC, CALL POSITION, and CALL DISTANCE all show vastly improved characteristics due

to the high speed of MYARC Extended BASIC II. This provides arcade-like animation and response in
a BASIC language.

MYARC Extended BASIC Il

3. SET-UP INSTRUCTIONS

3.1. Memory Expansion

1. Carefully following instructions in your Peripheral Expansion System User Manual, remove the
32K Memory Expansion Card from your PEB if there is one. The 32K Memory Card MUST NOT
be installed in your PEB when using MYARC Extended BASIC II or when the 128K Memory
Expansion Card is in place in your PEB.

o

Insert a high-performance 128K (or larger) Memory Expansion Card into your PEB. You can use
the same slot previously occupied by the 32K Card or any other convenient slot.

3.2. Powering Up

Follow standard procedure for powering up peripherals and console and for inserting the MYARC
Extended BASIC II module into the module slot of the console.

After each powering up insert the supplied MYARC Extended BASIC II diskette into drive #1 and select
"128KOS" from the selection menu on your screen. The MYARC Extended BASIC II program will then
load into RAM.

As in TT Extended BASIC, the program will look for DSK1.LOAD and execute accordingly.

If a DSK1.LOAD program is not found, the screen will show

MYARC BASIC 2.12
* READY *

with a blinking cursor. You may then remove the MYARC Extended BASIC II diskette from drive #1.

PLEASE NOTE — If you have the late model 99/4A (2.2 version) console, the following additional step
is required:

After inserting the MYARC Extended BASICII diskette into drive #1, select TI BASIC from the selection
menu of your screen and type in:

CALL 128KOS

Execution will then proceed as above.

TEXAS INSTRUMENTS
HOME COMPUTER

4. REFERENCE SECTION

This reference section is an alphabetical listing of all MYARC Extended BASIC IT commands statements,
and functions, with detailed explanation on each.

MYARC Extended BASIC II is totally upward compatible with TI Extended BASIC so that you are
already familiar with nearly all the referenced commands, statements, and functions.

Nevertheless, we suggest that you carefully review this entire section.
In addition to newly-added commands, statements and functions, additional details and explanations have

been expanded and/or added to the original TI Extended BASIC in the many places where MYARC
Extended BASIC II provides additional power, flexibility, and/or sophistication.

MYARC Extended BASIC Il

4.1. ABS

4.1.1. Format

ABS(numeric-expression)

4.1.2. Type

Numeric (REAL or DEFINT)

4.1.3. Descri ption

The ABS function gives the absolute value of the numeric-expression.

If the value of the numeric-expression is positive or zero, ABS returns its value.

If the value of the numeric-expression is negative, ABS returns its negative (a positive number).
ABS always returns a non-negative number.

4.1.4. Examples

100 PRINT ABS(45.2)
PRINT ABS(45.2)

Prints 45.2

100 VV=ABS(-7.345))
VV=ABS(-7.345)
Sets VV equal to 7.345

TEXAS INSTRUMENTS
HOME COMPUTER

4.2. ACCEPT

4.2.1. Format

ACCEPT [[AT(row, column)][BEEP][ERASE ALL][SIZE(numeric-expression)
[VALIDATE(type [,...D]I] variable

4.2.2. Cross Reference

GRAPHICS, INPUT, LINPUT, MARGINS, TERMCHAR

4.2.3. Descri ption

The ACCEPT instruction suspends program execution to enable you to enter data from the keyboard.

The options available with ACCEPT make it more versatile for keyboard input than the INPUT
statement. You can accept up to one line of input from any position within the screen window, sound a
tone when the computer is ready to accept input, clear the screen window before accepting input, limit
input to a specified number of characters, and define the types of valid input.

ACCEPT can be used as either a program statement or a command.

The data value entered from the keyboard is assigned to the variable you specify. If you specify a numeric
variable, the data value entered from the keyboard must be a valid representation of a number. If you
specify a string variable, the data value entered from the keyboard can be either a string or a number.
Trailing spaces are removed.

A string value entered from the keyboard can optionally be enclosed in quotation marks. However, a
string containing a comma, a quotation mark, or leading or trailing spaces must be enclosed in quotation
marks. A quotation mark within a string is represented by two adjacent quotation marks.

You normally press ENTER to complete keyboard input; however, you can also use AID, BACK, BEGIN,
CLEAR, PROC'D, DOWN ARROW, or UP ARROW. You can use the TERMCHAR function to determine
which of those keys was pressed to exit from the previous ACCEPT, INPUT, or LINPUT instruction.

Note that pressing CLEAR during keyboard input normally causes a break in the program. However, if
your program includes an ON BREAK NEXT statement, you can use CLEAR to exit from an input field.

In High-Resolution Mode, ACCEPT has no effect. See Appendix K.

o

MYARC Extended BASIC Il

4.2.4. Options
You can enter the following options, separated by a space in any order.

AT
Enables you to specify the location of the beginning of the input field. Row and column are
relative to the upper-left corner of the screen window defined by the margins. The upper-left
corner of the window defined by the margins is considered to be the intersection of row 1 and
column 1 by an ACCEPT instruction that uses the AT option. If you do not use the AT option,
the input field begins in the far left column of the bottom row of the window.

BEEP
Sounds a short tone to signal that the computer is ready to accept input.

ERASE ALL
Places a space character (ASCII code 32) in every character position in the screen window before
accepting input.

SIZE

Enables you to specify a limit to the number of characters that can be entered as input. The limit
is the absolute value of the numeric-expression. If the algebraic sign of the numeric-expression
is positive, or if you do not use the SIZE option, the input field is cleared before input is accepted.
If the numeric-expression is negative, the input field is not cleared, enabling you to place a value
in the input field that may be accepted by pressing ENTER. If you do not use the SIZE option,
or if the absolute value of the numeric-expression is greater than the number of characters
remaining in the row (from the beginning of the input field to the right margin), the input field
extends to the right margin.

TEXAS INSTRUMENTS
HOME COMPUTER

VALIDATE
Enables you to specify the characters or the ¢ypes of characters that are valid input. If you specify
more than one type, a character from any of the specified types is valid. The #ypes are as follows:

TYPE VALID INPUT

ALPHA All alphabetic characters.

UALPHA All upper-case alphabetic characters.
LALPHA All lower-case alphabetic characters.
DIGIT All digits (0-9).

NUMERIC All digits (0-9), the decimal point (.), the plus sign (+), the minus sign (-), and the
upper-case letter E.

You can also use one or more string expressions as ¢ypes. The characters contained in the strings
specified by the string expressions are valid input.

The VALIDATE option only verifies data entered from the keyboard. If there is a default value
in the input field (entered with DISPLAY, for example), the validate option has no effect on that
value.

4.2.5. Examples

100 ACCEPT AT(3,5):Y
Accepts data at the third row, fifth column of the screen window into the variable Y.

100 ACCEPT VALIDATE("YN"):R$
Accepts data containing Y and/or N into the variable R$. (YYNN would be a valid entry.)

100 ACCEPT ERASE ALL:B
Accepts data into the variable B after putting the blank character into all positions in the screen
window.

100 ACCEPT AT(R,C)SIZE(FIELDLEN)BEEP VALIDATE(DIGIT,"AYN"):X$
Accepts a digit or the letters A, Y, or N into the variable X$. The length of the input may be up
to FIELDLEN characters. A field the length of FIELDLEN is filled with blank characters, and
then the data value is accepted at row R, column C. A beep is sounded before acceptance of data.

MYARC Extended BASIC Il

4.2.6. Program

100 DIM NAME$(20),ADDR$(20)
110 DISPLAY AT (5,1)ERASE AL
L:"NAME:"

120 DISPLAY AT(7,1):"ADDRES
S

130 DISPLAY AT(23 1):"TYPE

A ? TO END ENTRY.'

140 FOR S=1TO 20

150 ACCEPT AT(5,7)VALIDATE(
ALPHA,"?")BEEP SIZE(13):NAME
$(S)

160 IF NAMES$(S)="?" THEN 200
170 ACCEPT AT(7,10)SIZE(12)
:ADDR$(S)

180 DISPLAY AT(7,10):." "

190 NEXT S

200 CALL CLEAR

210 DISPLAY AT(1,1):"NAME"
"ADDRESS"

220 FOR T=1TO S-1

230 DISPLAY AT(T+2,1):NAME$
(T),ADDRS(T)

240 NEXT T

250 GOTO 250

(Press CLEAR to stop the program.)

-

TEXAS INSTRUMENTS
HOME COMPUTER

4.3. ASC

4.3.1. Format

ASC(string-expression)
4.3.2. Cross Reference
CHR$

4.3.3. Descri ption

The ASC function returns the ASCII character code corresponding to the first character of the
string-expression.

ASC is the inverse of the CHR$ function.
The string-expression cannot be a null string.

4.3.4. Examples

100 PRINT ASC("A")
Prints 65 (the ASCII character code for the letter A).

100 B=ASC("1")
Sets B equal to 49 (the ASCII character code for the character 1).

100 DISPLAY ASC("HELLO")
Displays 72 (the ASCII character code for the letter H).

100 A$="DAVID"
110 PRINT ASC(AS)

Prints 68 in line 110.

MYARC Extended BASIC Il

4.4. ATN

4.4.1. Format

ATN(numeric-expression)

4.4.2. Cross Reference

COS, SIN, TAN

4.4.3. Descri ption

The ATN function returns the angle (in radians) whose tangent is the value of the numeric-expression.
The value returned by ATN is always greater than -pi/2 and less than pi/2.

To convert radians to degrees, multiply by 180/pi.

4.4.4. Examples

100 PRINT 4*ATN(-1)
Prints -3.141592654.

100 Q=PI/ATN(1.732)
Sets Q equal to 3.000036389.

w

TEXAS INSTRUMENTS
HOME COMPUTER

4.5. BREAK

4.5.1. Format

BREAK(line-number-list)

4.5.2. Cross Reference

CONTINUE, ON BREAK, UNBREAK
4.5.3. Descri ption

The BREAK instruction sets a breakpoint at each program statement you specify. When the computer
encounters a line at which you have set a breakpoint, your program stops running before that statement
is executed.

BREAK is a valuable debugging aid. You can use BREAK to stop your program at a specific program line,
so that you can check the values of variables at that point.

You can use BREAK line-number-list as either a program statement or a command.

The line-number-list consists of one or more line numbers, separated by commas. When a BREAK
instruction is executed, breakpoints are set at the specified program lines. If you use BREAK as a
program statement, line-number-list is optional. When a BREAK statement with no line-number-list is
encountered, the computer stops running the program at that point.

If you use BREAK as a command, you must include a line-numaber-list.
4.5.4. Break points

When your program stops at a breakpoint, the message BREAKPOINT IN (LINE NUMBER) is displayed.
While your program is stopped at a breakpoint, you can enter any valid command.

To resume program execution starting with the line at which the break occurred, enter the CONTINUE
command. However, if you edit your program (add, delete, or change a program statement) you cannot
use CONTINUE. (This prevents errors that could result from resuming execution in the middle of a
revised program.) You also cannot use CONTINUE if you enter a MERGE or SAVE command or a LIST
command with the file-specification option. Note that pressing CLEAR (FCTN 4) also causes abreakpoint
to occur before the execution of the next program statement. When your program stops at a breakpoint,
the computer performs the following operations:

MYARC Extended BASIC Il

L] It restores the default character definitions of all characters.

L] If the computer is in High-Resolution Mode, it restores the default graphics mode (Pattern) and
margin settings (3,30,1,24)

L] It restores the default foreground color (black) and background color (transparent) to all
characters.

| It restores the default screen color (cyan).

L] It deletes all sprites.

L] It resets the sprite magnification level to 1.

The graphics colors (see DCOLOR) and current position (see DRAWTO) are not affected. If the computer
is in Pattern or Text Mode, the graphics mode and margin settings remain unchanged.

4.5.5. Removin g Break points

You can remove a breakpoint by using the UNBREAK instruction or by editing or deleting the line at
which the breakpoint is set. When your program stops at a breakpoint, that breakpoint is automatically
removed.

All breakpoints are removed when you use the NEW or SAVE command.
4.5.6. BREAK Errors

Ifthe line-number-list includes an invalid line number (0 or a value greater than 32767), the message BAD
LINE NUMBERis displayed. If the line-number-list includes a fractional or negative line number, the
message SYNTAX ERRORis displayed. In both cases, the BREAK instruction is ignored; that is,
breakpoints are not set even at valid line numbers in the line-number-list. If you were entering BREAK
as a program statement it is not entered into your program.

If the line-number-list includes a line number that is valid (1-32767) but is not the number of a line in
your program, or a fractional number greater than 1, the message

WARNING
LINE NOT FOUND

is displayed. (If you were entering BREAK as a program statement, the line number is included in the
warning message.) A breakpoint is, however, set at any valid line in the line-number-list preceding the

line number which caused the warning.

If your program is operating in the High-Resolution Mode, no message is displayed. See Appendix K.

1
15

TEXAS INSTRUMENTS
HOME COMPUTER

4.5.7. Examples

150 BREAK
BREAK as a statement causes a breakpoint before execution of the next line in the program.

100 BREAK 120,130
Causes breakpoints before execution of lines 120 and 130.

BREAK 10,400 130
As a command causes breakpoints before execution of lines 10, 400, and 130.

MYARC Extended BASIC Il

4.6. BYE

4.6.1. Format

BYE
4.6.2. Descri ption

The BYE command resets the computer. Always use BYE to exit from MYARC Extended BASIC II. The
BYE command causes the computer to do the following:

L] Close all open files.

Erase the program and all variable values in memory.

Exit from MYARC Extended BASIC II.
L] Display the master title screen.

Although you can exit from MYARC Extended BASIC II also by pressing QUIT (FCTN=), pressing QUIT
does not close open files and may result in the loss of data in those files.

\I

TEXAS INSTRUMENTS
HOME COMPUTER

4.7. CALL

4.7.1. Format

CALL subprogram-name [(parameter-list)

4.7.2. Cross Reference

SUB

4.7.3. Descri ption

The CALL instruction transfers program control to the specified subprogram.

You can use CALL as either a program statement or a command.

The CALL instruction transfers program control to the subprogram specified by the subprogram-name.
The optional parameter-list consists of one or more parameters separated by commas. Use of a
parameter-list is determined by the subprogram you are calling. Some subprograms require a
parameter-list, some do not use a parameter-list, and with some a parameter-list is optional.

You can use CALL as a program statement to call either a built-in MYARC Extended BASIC II
subprogram or to call a subprogram that you write. After the subprogram is executed, program control

returns to the statement immediately following the CALL statement.

You can use CALL as a command only to call a built-in MYARC Extended BASIC II subprogram, not to
call a subprogram that you write.

Each of the following built-in subprogram is discussed separately in this manual.

CHAR GCHAR PEEKV
CHARPAT GRAPHICS POINT
CHARSET HCHAR POKEV
CIRCLE INIT POSITION
CLEAR JOYST RECTANGLE
COINC KEY SAY
COLOR LINK SCREEN
DELSPRITE LOAD SOUND
DISTANCE LOCATE SPGET
DRAW MAGNIFY SPRITE
DRAWTO MOTION VCHAR
DCOLOR MARGINS VERSION
ERR PATTERN WRITE
FILL PEEK

MYARC Extended BASIC Il

4.7.4. Program

The following program illustrates the use of CALL with a built-in subprogram (CLEAR) in line 100 and
the use of a user-written subprogram (TIMES) in line 120.

100 CALL CLEAR
110 X=4

120 CALL TIMES(X)
130 PRINT X

140 STOP

200 SUB TIMES(2)
210 Z=Z*PI

220 SUBEND

RUN

(screen clears)
12.56637061

©

TEXAS INSTRUMENTS
HOME COMPUTER

4.8. CHAR sub program

4.8.1. Format

CALL CHAR(character-code , pattern-string [,--])

4.8.2. Cross Reference

CHARPAT, CHARSET, COLOR, DCOLOR, GRAPHICS, HCHAR, SCREEN, SPRITE, VCHAR, WRITE
4.8.3. Descri ption

The CHAR subprogram enables you to define your own characters so that you can create graphics on the
screen.

CHAR is the inverse of the CHARPAT subprogram.

Character-code is a numeric expression with a value from 0 to 255, specifying the number of the character
(codes 0-255). You can define any of the 256 characters and display them as characters and/or sprites.

The pattern-string specifies the definition of the character. The pattern-string, which may be up to 64
digits long, is a coded representation of the pixels that define up to four characters on the screen, as
explained below. Any letters entered as part of a pattern-string must be upper case.

You can use the CHARSET subprogram to restore default character definitions of characters 32-95
inclusive. Also, when your program ends (either normally or because of an error), stops at a breakpoint,
or changes graphics mode, all default character definitions (0-255) are restored.

The instructions that you can use to display characters on the screen vary according to the graphics
mode. In all modes except Text Mode, you can use the SPRITE subprogram to display sprites on the

screen.

If you use HCHAR or VCHAR to display a character on the screen and then later use CHAR to change
the definition of that character, the result depends on the graphics mode:

L] In Pattern and Text Modes, the displayed character changes to the newly defined pattern.

L] In High-Resolution Mode, the displayed character remains unchanged.

MYARC Extended BASIC Il

4.8.4. Pattern and Hi gh-Resolution Modes

In Pattern and High-Resolution Modes, each character is composed of 64 pixels in a grid eight pixels high
and eight pixels wide, as explained below.

In Pattern Mode, you can use the DISPLAY, DISPLAY USING, PRINT, and PRINT USING instructions
and the HCHAR and VCHAR subprogram to display characters on the screen.

In High-Resolution Mode, you can use the HCHAR, VCHAR, and WRITE subprogram to display
characters on the screen. Only characters 0-215 are available. See Appendix K.

4.8.5. Text Mode

In Text Mode, each character is composed of 48 pixels in a grid eight pixels high and six pixels wide. The
eight by eight grid described below is used to define characters; however, the last two pixels in each
pixel-row are ignored.

In Text Mode, you can use the DISPLAY, DISPLLAY USING, PRINT, and PRINT USING instructions
and the HCHAR and VCHAR subprogram to display characters on the screen. You cannot display sprites
in Text Mode.

4.8.6. Character Definition — The Pattern Strin g

Characters are defined by turning some pixels on and leaving others off. The space character (ASCII code
32) is a character with all the pixels turned off. Turning all the pixels on produces a solid block, eight
pixels high and eight pixels wide.

The foreground color is the color of the pixels that are on. The background color is the color of the pixels
that are off. (For more information see COLOR, DCOLOR, and SCREEN.)

When you enter MYARC Extended BASIC 11, the characters are predefined with the appropriate pixels
turned on. To redefine a character, you specify which pixels to turn on and which pixels to turn off.

For the purpose of defining characters, each pixel-row (eight pixels) is divided into two blocks (four pixels
each). Each digit in the pattern-string is a code specifying the pattern of the four pixels in one block.

You define a character by describing the blocks from left to right and from top to bottom. The first two
digits in the pattern-string describe the pattern for the first two blocks (pixel-row 1) of the grid, the next
two digits define the next two blocks (pixel-row 2), and so on.

The computer uses a binary (base 2) code to represent the status of each pixel. You use hexadecimal (base
16) notation of the binary code to specify which pixels in a box are turned on and which pixels turned off.

TEXAS INSTRUMENTS
HOME COMPUTER

The following table shows all the possible on/off combinations of the four pixels in a block, the binary
code, and hexadecimal notation representing each combination.

Binary Code Hexadecimal
Block (0=0ff, 1=0n) Notation

0000 0

0001

—

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

Hlg|lglalwg | |lo|lw|w|lo o]lwe |w]N

1111

A character definition consists of 16 hexadecimal digits; each digit represents one of the 16 blocks that
comprise a character. As the paittern-string may be up to 64 digits long, you can define as many as four
consecutive characters with one pattern-string.

If the length of the pattern-string is not a multiple of 16, the computer fills the pattern-string with zeros
until its length is a multiple of 16.

MYARC Extended BASIC Il

4.8.7. Programs

For the dot pattern pictured below, you use "1898FF3D3C3CE404" as the pattern string for CALL CHAR.

18

98

FF

The following program uses this and one other string to make a figure "dance". This example will work
only in Pattern Mode.

100 CALL CLEAR

110 A$="1898FF3D3C3CE404"
120 B$="1819FFBC3C3C2720"
130 CALL COLOR(27,7,12)
140 CALL VCHAR(12,16,244)
150 CALL CHAR(244,A$)

160 GOSUB 200

170 CALL CHAR(244,B$)

180 GOSUB 200

190 GOTO 150

200 FOR DELAY=1 TO 150
210 NEXT DELAY

220 RETURN

RUN

(screen clears)
(character moves)
(Press CLEAR to stop the program.)

W

TEXAS INSTRUMENTS
HOME COMPUTER

To make this example work in the High-Resolution Mode, make the following changes.

105 CALL GRAPHICS(3)

130 CALL DCOLOR(7,12)

140 CALL CHAR(144,A$,145,B$)
150 CALL VCHAR(12,16,144)

170 CALL VCHAR(12,16,145)

If a program stops for a breakpoint, all characters are reset to their standard patterns. When the program
ends normally, or because of an error, all characters are reset.

Exiting High-Resolution Mode resets all characters.

The following example works in all graphics modes.

100 CALL CLEAR

110 CALL GRAPHICS(X)

120 CALL CHAR(144,"FFFFFFFFFFFFFFFF")
130 CALL CHAR(42,"0FOFOFOFOFOFOFOF")
140 CALL HCHAR(12,17,42)

150 CALL VCHAR(14,17,144)

160 FOR DELAY=1 TO 500

170 NEXT DELAY

RUN

The X in line 110 must be replaced with the number of the graphics mode to be designated.

MYARC Extended BASIC Il

4.9. CHARPAT sub program

4.9.1. Format

CALL CHARPAT (character-code , string-variable [,--])
4.9.2. Cross Reference

CHAR

4.9.3. Descri ption

The CHARPAT subprogram enables you to ascertain the current character definitions of specified
characters.

Character-code is a numeric expression with a value from 0 to 255 specifying the number of the character
of which you want the current definition.

The pattern describing the character definition is returned in the specified string-variable. The pattern
is in the form of a 16-digit hexadecimal code. See CHAR for an explanation of the pattern used for
character definition.

See Appendix B for a list of the available characters.

4.9.4. Example

100 CALL CHARPAT(33,C$%)
Sets C$ equal to "0010101010001000", the pattern identifier for character 33, the exclamation
point.

o1

TEXAS INSTRUMENTS
HOME COMPUTER

4.10. CHARSET sub program — Set Characters

4.10.1. Format
CALL CHARSET

4.10.2. Cross Reference

CHAR, COLOR

4.10.3. Descri ption

The CHARSET subprogram restores default character definitions and colors.

CHARSET restores the default character definitions to characters 32-95 inclusive. CHARSET restores
the default colors to all 256 characters.

See Appendix B for a list of the available characters.

MYARC Extended BASIC Il

4.11. CHR$ function — Character

4.11.1. Format

CHRS(character-code)
4.11.2. Type

String

4.11.3. Cross Reference

ASC
4.11.4. Descri ption

The CHR$ function returns the character corresponding to the ASCII character code specified by the
value of the character-code.

CHRS is the inverse of the ASC function.

Character-code is a numeric expression with a value from 0 to 32767 inclusive, specifying the number of
the character you wish to use. If the value of character-code is greater than 255, it is repeatedly reduced
by 256 until it is less than 256. If the value of the character-code is not an integer, it is rounded to the
nearest integer.

4.11.5. Examples

100 PRINT CHR$(72)
Prints H.

100 X$=CHR$(33)
Sets X$ equal to 1.

\I

TEXAS INSTRUMENTS
HOME COMPUTER

4.11.6. Program

For a complete listing of all ASCII characters and their corresponding ASCII values, run the following
program.

100 CALL CLEAR

110 IMAGE ### ## ### ##

120 FOR A=32 TO 127

130 PRINT USING 110:A,CHR$(A);
140 NEXT A

150 GOTO 150

RUN

(Press CLEAR to stop the program.)

MYARC Extended BASIC Il

4.12. CIRCLE sub program

4.12.1. Format

CALL CIRCLE(line-type , pixel-row | pixel-column | radius
[, pixel-row2 | pixel-column2 | radius2 [,...]])

4.12.2. Cross reference

DCOLOR, DRAW, DRAWTO, FILL, GRAPHICS, POINT, RECTANGLE, WRITE

4.12.3. Descri ption

The CIRCLE subprogram enables you to draw or erase circles around a specified point.

Note that CIRCLE draws and erases the outside edges (perimeter) of a circle, not the area it encircles.

Line-type is a numeric-expression whose value specifies the action taken by the CIRCLE subprogram.
TYPE ACTION
2 Reverses the status of each pixel of the circle. (If a pixel is on, it is turned off; if a pixel

is off, it is turned on). This effectively reverses the color of the circle.

1 Draws a circle of the foreground color specified by the DCOLOR subprogram. This is
accomplished by turning on each pixel of the specified circle.

0 Erases a circle. This is accomplished by turning off each pixel of the specified circle.
Pixel-row and pixel-column are numeric expressions whose values represent the screen portion of the
point the circle is drawn around (center-point). Radius is a numeric expression whose value represents

the distance from the center-point of the circle to it's outer edge.

You can optionally draw more circles by specifying additional sets of pixels (center-points), and additional
radii.

Pixel-row must have a value from 1 to 192. Pixel-column must have a value from 1 to 256. Radius must
have a value from 1 to 320.

The pixel-row/pixel-column you specify (center-point), becomes the current position used by the
DRAWTO subprogram.

CIRCLE can only be used in High-Resolution Mode. An error results if you use CIRCLE in Pattern or
Text Modes.

TEXAS INSTRUMENTS
HOME COMPUTER

4.12.4. Example

The following program first selects the High-Resolution Mode (which also clears the screen). Next it uses
a FOR-NEXT loop to create and subsequently erase a series of circles from one side of the screen to the
other side of the screen, giving the illusion of a rolling ball.

100 CALL GRAPHICS(3)

110 FOR T=24 to 216 STEP 4

120 CALL CIRCLE(1,166,28+T,24)
130 CALL CIRCLE(0,166,26+T,24)
140 CALL CIRCLE(1,166,30+T,24)
150 CALL CIRCLE(0,166,28+T,24)
160 NEXT T

170 END

MYARC Extended BASIC Il

4.13. CLEAR sub program

4.13.1. Format
CALL CLEAR

4.13.2. Cross Reference

DCOLOR, DELSPRITE

4.13.3. Descri ption

The CLEAR subprogram erases the screen.

In Pattern and Text Modes, CLEAR places a space character (ASCII code 32) in every screen position.

In High-Resolution Mode, CLEAR erases the screen by turning off all pixels and restoring the default
graphics colors (black on transparent).

The CLEAR subprogram has no effect on sprites. Use the DELSPRITE subprogram to remove sprites.
4.13.4. Programs

When the following program is run, the screen is cleared before the PRINT statements are performed.

100 CALL CLEAR

110 PRINT "HELLO THERE!"
120 PRINT "HOW ARE YOU?"
RUN

(screen clears)

HELLO THERE!
HOW ARE YOU?

If the space character (ASCII code 32) has been redefined by the CALL CHAR subprogram, the screen
is filled with the new character when CALL CLEAR is performed.

100 CALL CHAR(32,"0103070FIF3F7FFF")
110 CALL CLEAR

120 GOTO 120

RUN

(screen is filled with *)
(Press CLEAR to stop the program.)

1
31

TEXAS INSTRUMENTS
HOME COMPUTER

The following program first fills and then clears the entire screen.

100 CALL GRAPHICS(3)

110 CALL HCHAR(1,2,72,768)

120 FOR DELAY=1 TO 500::NEXT DELAY
130 CALL CLEAR

140 GOTO 140

RUN

(Press CLEAR to stop the program.)

MYARC Extended BASIC Il

4.14. CLOSE

4.14.1. Format
CLOSE #file-number [:DELETE]

4.14.2. Cross Reference
DELETE, OPEN
4.14.3. Descri ption

The CLOSE instruction closes the specified file. When you close a file, you discontinue the association
(between your program and the file) that you established in an OPEN instruction.

You can use CLOSE as either a program statement or a command.

The file-number is a numeric expression whose value specifies the number of the file as assigned in its
OPEN instruction.

The DELETE option, which can be used only with certain devices, deletes the file after closing it.
DELETE has no effect on a file stored on an audio cassette. For more information about using the
DELETE option with a particular device, refer to the owner's manual that comes with that device.

After the CLOSE instruction is performed, the closed file cannot be accessed by an instruction because
the computer no longer associates that file with a file-number. You can then reassign the file-number to

another file.

When you close a file on a cassette, the computer displays instructions for you to follow.

@

TEXAS INSTRUMENTS
HOME COMPUTER

4.14.4. Closin g Files Without the CLOSE Instruction

To protect the data in your files, the computer closes all open files when it reaches the end of your
program or when it encounters an error (either in Command or Run mode).

Open files are also closed when you do one of the following:

L] Edit your program (add, delete, or change a program statement).
L] Enter the LIST command with the file-specification option.
L Enter the BYE, MERGE, NEW, OLD, RUN, or SAVE command.

Always use BYE to exit from MYARC Extended BASIC II. Although you can also exit by pressing QUIT
(FCTN=), pressing QUIT does not close open files, and may result in the loss of data in those files.

Open files are not closed when you stop program execution by pressing CLEAR (FCTN 4) or when your
program stops at a breakpoint set by a BREAK instruction.

4.14.5. Examples

When the computer performs the CLOSE statement for a cassette tape recorder, you receive instructions
for operating the recorder. The following two examples show the difference between closing a cassette
file and closing a diskette file.

4.14.5.1. Cassette File

100 OPEN #24:"CS1",INTERNAL,OUTPUT,FIXED
200 CLOSE #24

RUN

REWIND CASSETTE TAPE
THEN PRESS ENTER

PRESS CASSETTE RECORD
THEN PRESS ENTER

PRESS CASSETTE STOP
THEN PRESS ENTER

4.14.5.2. Diskette File
100 OPEN #24:"DSK1.MYDATA",INTERNAL,UPDATE,FIXED

200 CLOSE #24
RUN

The CLOSE statement for a diskette requires no further action on your part.

34

MYARC Extended BASIC Il

4.15. COINC subprogram — Coincidence
4.15.1. Format

Two Sprites

CALL COINC(# sprite-numberl # sprite-number2 | tolerance , numeric-variable)

A Sprite and a Screen Pixel

CALL COINC(# sprite-number , pixel-row , pixel-column | tolerance , numeric-variable)

All S prites

CALL COINC(ALL, numeric-variable)
4.15.2. Cross Reference

SPRITE

4.15.3. Descri ption

The COINC subprogram enables you to ascertain if sprites are coincident (in conjunction) with each other
or with a specified screen pixel.

The exact conditions that constitute a coincidence vary depending on whether you are testing for the
coincidence of two sprites, a sprite and a screen pixel, or all sprites.

If the sprites are moving very quickly, COINC may occasionally fail to detect a coincidence.

o

TEXAS INSTRUMENTS
HOME COMPUTER

4.15.4. Two Sprites

Two sprites are considered to be coincident if the upper-left corners of the sprites are within a specified
number of pixels (folerance) of each other.

The values of the numeric expressions sprite-number] and sprite-number2 specify the numbers of the two
sprites as assigned in the SPRITE subprogram.

A coincidence exists if the distance between the pixels in the upper-left corners of the two sprites is less
than or equal to the value of the numeric expression tolerance.

The distance between two pixels is said to be within tolerance if the difference between pixel-rows and
the difference between pixel-columns are both less than or equal to the specified tolerance. Note that this
is not the same as the distance indicated by the DISTANCE subprogram.

COINCreturns a value in the numeric-variable indicating whether or not the specified coincidence exists.
The value is -1 if there is a coincidence or 0 if there is no coincidence.

4.15.5. A Sprite and a Screen Pixel

A sprite is considered to be coincident with a screen pixel if the upper-left corner of the sprite is within
a specified number of pixels (tolerance) of the screen pixel or if any pixel in the sprite occupies the screen
pixel location.

The sprite-number is a numeric-expression whose value specifies the number of the sprite assigned in the
SPRITE subprogram.

The pixel-row and pixel-column are numeric expressions whose values specify the position of the screen
pixel.

A coincidence exists if the distance between the pixel in the upper-left corner of the sprite and the screen
pixel is less than or equal to the value of the numeric expression tolerance. (Note that a coincidence also
exists if any pixel in the sprite occupies the screen pixel location.)

The distance between two pixels is said to be within tolerance if the difference between pixel-rows and
the difference between pixel-columns are both less than or equal to the specified tolerance. Note that this
is not the same as the distance indicated by the DISTANCE subprogram.

COINCreturns avalue in the numeric-variable indicating whether or not the specified coincidence exists.
The value is -1 if there is a coincidence or O if there is no coincidence.

MYARC Extended BASIC Il

4.15.6. All S prites
The ALL option tests for the coincidence of any of the sprites.

For the ALL option, sprites are considered to be coincident if any pixel of any sprite occupies the same
screen pixel location as any pixel of any other sprite.

COINC returns a value in the numeric-variable indicating whether or not a coincidence exists. The value
is -1 if there is a coincidence or 0 if there is no coincidence.

4.15.7. Program

100 CALL CLEAR

110 S$="0103070FIF3F7FFF"

120 CALL CHAR(244,S$)

130 CALL CHAR(250,S$)

140 CALL SPRITE(#1,244,7,50,50)
150 CALL SPRITE(#2,250,5,44,42)
160 CALL COINC(#1,#2,10,C)

170 PRINT C

180 CALL COINC(ALL,C)

190 PRINT C

200 GOTO 200

RUN

1

0

(Press CLEAR to stop the program.)

Line 160 shows a coincidence because the upper-left corners of the sprites are within 10 pixels of each
other.

Line 180 shows no coincidence because the shaded areas of the sprites do not occupy the same screen
pixel location. (Shaded areas are compared only if you specify the ALL option.)

\I

TEXAS INSTRUMENTS
HOME COMPUTER

4.16. COLOR sub program
4.16.1. Format

Pattern Mode

CALL COLOR(character-set , foreground-color , background-color |[,...])
Sprites

CALL COLOR(#sprite-number , foreground-color [,...D

4.16.2. Cross Reference

CHAR, DCOLOR, GRAPHICS, SCREEN, SPRITE

4.16.3. Descri ption

The COLOR subprogram enables you to specify the colors of characters or sprites.

The types of parameters you specify in a call to the COLOR subprogram depend on whether you are
assigning colors to characters or to sprites.

In Pattern Mode, each character has two colors. The color of the pixels that make up the character itself
is the foreground-color; the color of the pixels that occupy the rest of the character position on the screen
is the background-color.

When you enter MYARC Extended BASIC II, the foreground-color of all the characters is black; the
background-color of all characters is transparent. These default colors are restored when your program
ends (either normally or because of an error), stops at a breakpoint, or changes graphics mode.

If a color is transparent, the color actually displayed is the color specified by the SCREEN subprogram.

See Appendix F for a listing of available colors and their respective codes.

See Appendix K if you are operating in High-Resolution Mode.

MYARC Extended BASIC Il

4.16.4. Pattern Mode

In Pattern Mode, the 256 available characters are divided into 32 sets of 8 characters each. When you
assign a color combination to a particular set, you specify the colors of all 8 characters in that set.

The character-set is a numeric-expression whose value specifies the number (0-31) of the 8-character set.

Foreground-color and background-color are numeric expressions whose values specify colors that can be
assigned from among the 16 available colors.

See Appendix D for available characters and character sets in Pattern Mode.
4.16.5. Text Mode

An error occurs if you use the COLOR subprogram to assign character colors in Text Mode. Use the
SCREEN subprogram to assign character colors in Text Mode.

In Text Mode, using the COLOR program to assign colors to sprites has no effect (Text Mode does not
display sprites).

4.16.6. High-Resolution Mode
In High-Resolution Mode, you can use COLOR only to assign colors to sprites; any other use of the

COLOR subprogram causes an error. Use the DCOLOR subprogram to specify character and graphics
colors in High-Resolution Mode.

4.16.7. Sprites

A gsprite is assigned a foreground-color when it is created with the SPRITE subprogram. The
background-color of a sprite is always transparent.

To re-assign colors to sprites you must use the sprite parameters, no matter what graphics mode the
computer is in.

The sprite-number is a numeric expression whose value specifies the number of a sprite as assigned by
the SPRITE subprogram.

Foreground-color is a numeric expression whose value specifies a color that can be assigned from among
the 16 available colors.

O

TEXAS INSTRUMENTS
HOME COMPUTER

4.16.8. Examples

100 CALL COLOR(#5,16)
Sets sprite number 5 to have a foreground-color of 16 (white). The background-color is always
1 (transparent).

This example is valid in all graphics modes. (Remember that sprites have no effect in Text Mode.)

100 CALL COLOR(#7,INT(RND*16+1))
Sets sprite number 7 to have a foreground-color chosen randomly from the 16 colors available.
The background color is 1 (transparent,).

This example is valid in all graphics modes.
4.16.9. Program

This program sets the foreground-color of characters 48-55 to 5 (dark blue) and the background-color to
12 (light yellow).

100 CALL CLEAR

110 CALL GRAPHICS(1)

120 CALL COLOR(3,5,12)

130 DISPLAY AT(12,16):CHR$(48)
140 GOTO 140

(Press CLEAR to stop the program.)

MYARC Extended BASIC Il

4.17. CONTINUE

4.17.1. Format

CONTINUE
CON

4.17.2. Cross Reference
BREAK
4.17.3. Descri ption

The CONTINUE command restarts a program which has been stopped by a breakpoint. It may be
entered whenever a program has stopped running because of a breakpoint caused by the BREAK
command or statement, or CLEAR (FCTN 4). However, you cannot use the CONTINUE command if you
have edited a program line. CONTINUE may be abbreviated as CON.

When a breakpoint occurs, the standard character set and standard colors are restored. Sprites cease to
exist. CONTINUE does not restore standard characters that have been reset, or any colors. Otherwise,
the program continues as if no breakpoint had occurred.

41

TEXAS INSTRUMENTS
HOME COMPUTER

4.18. COS function — Cosine

4.18.1. Format

COS(numeric-expression)

4.18.2. Type

REAL

4.18.3. Cross Reference
ATN, SIN, TAN

4.18.4. Descri ption

The COS function returns the cosine of the angle whose measurement in radians is the value of the
numeric-expression.

The value of the numeric-expression cannot be less than -1.5707963269514810 or greater than
1.5707963266374210.

To convert the measure of an angle from degrees to radians, multiply by pi/180.
4.18.5. Program

The following program gives the cosine for each of several angles.

100 A=1.047197551196
110 B=60

120 C=45*P1/180

130 PRINT COS(A);COS(B)
140 PRINT COS(B*PI/180)
150 PRINT COS(C)

RUN

5 -.9524129804

5

7071067812

MYARC Extended BASIC Il

4.19. DATA

4.19.1. Format

DATA data-list

4.19.2. Cross Reference
READ, RESTORE
4.19.3. Descri ption

The DATA statement enables you to store constants within your program. You can assign the constants
to variables by using a READ statement.

The data-list consists of one or more constants separated by commas. The constants can be assigned to
the variables specified in the variable-list of a READ statement. The assignment is made when the READ
statement is executed.

If a numeric variable is specified in the variable-list of a READ statement, a numeric constant must be
in the corresponding position in the data-list of the DATA statement. If a string variable is specified in
a READ statement either a string or a numeric constant may be in the corresponding position in the
DATA statement. A string constant in a data-list may optionally be enclosed in quotation marks.
However, if the string constant contains a comma, a quotation mark, or leading or trailing spaces, it must
be enclosed in quotation marks.

A quotation mark within a string constant is represented by two adjacent quotation marks. A null string
isrepresented in a data-list by two adjacent commas, or two commas separated by two adjacent quotation
marks.

The order in which the data values appear within the data-list and the order of the DATA statements
within a program normally determine the order in which the values are read. Values from each data-list
areread sequentially, beginning with the first item in the first DATA statement. If your program includes
more than one DATA statement, the DATA statements are read in ascending line-number order (unless
you use a RESTORE statement to specify otherwise).

A DATA statement encountered during program execution is ignored.

A DATA statement cannot be part of a multiple-statement line, nor can it include a trailing remark.

43

TEXAS INSTRUMENTS
HOME COMPUTER

4.19.4. Program

The following program reads and prints several numeric and string constants.

100 FORA=1TO 5

110 READ B,C

120 PRINT B;C

130 NEXT A

140 DATA 2,4,6,7,8

150 DATA 1,2,3,4,5

160 DATA """ THIS HAS QUOTES™"
170 DATA NO QUOTES HERE
180 DATA " NO QUOTES HERE,EITHER"
190 FOR A=1TO 6

200 READ B$

210 PRINT B$

220 NEXT A

230 DATA 1,NUMBER,MYARC
RUN

24

67

81

23

45

"THIS HAS QUOTES"

NO QUOTES HERE

NO QUOTES HERE,EITHER

1

NUMBER

MYARC

Lines 100 through 130 read five sets of data and print their values, two to a line.

Lines 190 through 220 read six data elements and print each on its own line.

MYARC Extended BASIC Il

4.20. DCOLOR sub program— Draw Color

4.20.1. Format

CALL DCOLOR(foreground-color , background-color)
4.20.2. Cross Reference

CIRCLE, COLOR, DRAW, DRAWTO, FILL, GRAPHICS, HCHAR, POINT, RECTANGLE, VCHAR
WRITE

4.20.3. Descri ption
The DCOLOR subprogram enables you to set the graphics colors.

The graphics colors are used by the CIRCLE, DRAW, DRAWTO, FILL, HCHAR, POINT, RECTANGLE,
VCHAR, and WRITE subprogram in High-Resolution Mode.

Foreground-color and background-color are numeric expressions whose values specify colors that can be
assigned from among the 16 available colors. See Appendix F for a list of the available colors.

When you enter MYARC Extended BASIC II, the foreground-color is set to black and the
background-color is set to transparent. These default graphics colors are restored only when you change
graphics mode. They are not restored when you enter RUN.

DCOLOR is effective only in High-Resolution Mode. DCOLOR has no effect in Pattern or Text Mode.
4.20.4. Programs

The following program sets the foreground-color of graphics to 5 (dark blue) and the background-color
to 8 (cyan).

100 CALL CLEAR

110 CALL GRAPHICS(3)
120 CALL DCOLOR(5,8)

130 CALL HCHAR(8,20,72,3)
140 GOTO 140

(Press CLEAR to stop the program.)

45

TEXAS INSTRUMENTS
HOME COMPUTER

In the following program, the letters "HHH" are displayed on the screen.

100 CALL CLEAR

110 CALL GRAPHICS(3)

120 RANDOMIZE

130 CALL DCOLOR(INT(RND*8+1)*2,INT(RND*8+1)*2-1)
140 CALL HCHAR(8,20,72,3)

150 FOR X=1 TO 400

160 NEXT X

170 GOTO 120

(Press CLEAR to stop the program.)

Line 130 changes the foreground-color (chosen randomly from the even-numbered colors available) and
the background-color (chosen randomly from the odd-numbered colors).

MYARC Extended BASIC Il

4.21. DEF — Define Function

4.21.1. Format

DEF [data-type] function-name [([data-typel | parameterl |,...
[data-type7] parameter7])|= expression

4.21.2. Descri ption

The DEF statement enables you to define your own functions. These user-defined functions can then be
used in the same way as built-in functions.

The function-name can be any valid variable name that does not appear as a variable name elsewhere in
your program.

If the function-name is a numeric variable, the value of the expression must be a number. If the
function-name is a string variable, the value of the expression must be a string.

If the function-name is a numeric variable, you can optionally specify its data-type (DEFINT or REAL).

You can use up to seven parameters to pass values to a function. Parameters must be valid variable
names. A variable name used as a parameter cannot be the name of an array. You can use an array
element in the expression if the array does not have the same name as a parameter in that statement. The
variable-names used as parameters in a DEF statement are local to that statement; that is, even if a
parameter has the same name as a variable in your program, the value of that variable is not affected.

If a parameter is a numeric variable, you can optionally specify its data-type (DEFINT or REAL).

A DEF statement must have a lower line number than that of any use of the function-name it defines.
A DEF statement is not executed.

A DEF statement can appear anywhere in your program, except that it cannot be part of an IF THEN
statement.

4.21.3. DEF without parameters
When your program encounters a statement containing a previously defined function-name with no
parameters, the expression is evaluated, and the function is assigned the value of the expression at that

time.

If you define a function-name without parameters, it must appear without parameters when you use it
in your program.

47

TEXAS INSTRUMENTS
HOME COMPUTER

4.21.4. DEF with Parameters

When your program encounters a statement containing a previously defined function-name with
parameters, the parameter values are passed to the function in the same order in which they are listed.
The expression is evaluated using those values, and the function is assigned the value of the expression
at that time. String values can be passed only to string parameters. Numeric values can be passed only
to numeric parameters.

If you define a function with parameters, it must appear with the same number of parameters when you
use it in your program.

4.21.5. Recursive Definitions

A DEF statement may reference other defined functions (the expression may include previously defined
function-names). However, a DEF statement may not be either directly or indirectly recursive
(self-referencing).

Direct recursion occurs when you use the function-name in the expression of the same DEF statement.
(This would be similar to writing a dictionary definition that included the word you were trying to
define.)

Indirect recursion occurs when the expression contains a function-name, and in turn the expression in
the DEF statement of that function (or other function subsequently referenced) includes the original
function-name. (This would be similar to looking up the dictionary definition of a word, finding that the
definition included other words that you needed to look up, and then discovering that the definitions led
you directly back to your original word.)

4.21.6. Examples

100 DEF PAY(OT)=40*RATE+1.5*RATE*OT

110 RATE=4.00

120 PRINT PAY(3)

RUN

178
Defines PAY so that each time it is encountered in a program the pay is figured using the RATE
of pay times 40 plus 1.5 times the rate of pay times the overtime hours.

100 DEF RND20=INT(RND*20+1)
Defines RND20 so that each time it is encountered in a program an integer from 1 through 20
is given.

100 DEF FIRSTWORDS$(NAME$)=SEG$(NAMES$,1,POS(NAMES," ", 1)-1)
Defines FIRSTWORDS to be the part of NAMES$ that precedes a space.

MYARC Extended BASIC Il

4.21.7. Programs

The following program illustrates a use of DEF.

100 DEF A(INTEGER B)=SQR(B)*5
110 INPUT C
120 PRINT A(C)

In line 100 the parameter B is assigned the DEFINT data-type. In line 110 the value assigned to C is
passed to the parameter B.

The following program does modulo arithmetic by using the user-defined function MOD. MOD accepts
two parameters that are whole numbers.

100 DEF MOD(X,Y)=X-(Y*INT(ABS(X)/ABS(Y))*SGN(X*Y))
110 PRINT MOD(3,2)

120 PRINT MOD(500,3)

130 PRINT MOD(25,5)

140 PRINT MOD(25,3)

RUN

RONR

49

TEXAS INSTRUMENTS
HOME COMPUTER

4.22. DEFINT

4.22.1. Format

DEFINT numeric-variable-list
DEFINT ALL

4.22.2. Cross Reference

DEF, DIM, OPTION BASE, REAL, SUB

4.22.3. Descri ption

The DEFINT instruction enables you to declare the data-type of specified numeric variables as DEFINT.
DEFINT variables are processed faster and require less memory than do REAL variables.

You can use DEFINT as either a program statement or a command.

The numeric-variable-list consists of one or more numeric variables separated by commas. The variables
are all assigned the DEFINT date-type. A DEFINT statement with a numeric-variable-list must have a
lower line number than any program reference to any variable in that list.

If you enter the ALL option, all numeric variables in your program are assigned the DEFINT data-type
unless specifically declared as REAL. A DEFINT statement with the ALL option must have a lower line

number than any program reference to any numeric variable or array.

A DEFINT ALL statement in your main program does not affect the data-type of a numeric variable in
a subprogram.

A numeric variable of the DEFINT data-type is a whole number greater than or equal to -32768 and less
than or equal to 32767.

MYARC Extended BASIC Il

4.23. DELETE

4.23.1. Format

DELETE file-specification
4.23.2. Cross Reference
CLOSE

4.23.3. Descri ption

The DELETE instruction removes a file from an external storage device. Although the file is not
physically erased, the space it occupies becomes available for you to store another file in the future.

You can use DELETE as either a program statement or a command.

The file-specification indicates the name of the file to be deleted. The file-specification is a string
expression; if you use a string constant, you must enclose it in quotation marks.

DELETE has no effect on a file stored on an audio cassette.

You can also remove files stored on some external devices by using the DELETE option in the CLOSE
instruction.

For more information about the options available with a particular device, refer to the owner's manual
that comes with that device.

4.23.4. Example

DELETE "DSK1.MYFILE"
Deletes the file named MYFILE from the diskette in disk drive 1.

4.23.5. Program

The following program illustrates a use of DELETE.

100 INPUT "NAME OF FILE TO BE DELETED: ":X$
110 DELETE X$

-

TEXAS INSTRUMENTS
HOME COMPUTER

4.24. DELSPRITE sub program — Delete S prite
4.24.1. Format

Delete Specified S prite

CALL DELSPRITE(# sprite-number [,...])

Delete All S prites

CALL DELSPRITE(ALL)

4.24.2. Cross Reference

CLEAR, SPRITE

4.24.3. Descri ption

The DELSPRITE subprogram enables you to delete one or more sprites. All sprites are deleted when your
program ends (either normally or because of an error), stops at a breakpoint, or changes graphics mode.

4.24.4. Delete Specific S prites

Sprite-number is a numeric expression whose value specifies the number of the sprite as assigned in the
SPRITE subprogram. The sprite can reappear if it is redefined by the SPRITE subprogram, or if the
LOCATE subprogram is called.

4.24.5. Delete All S prites

If you enter the ALL option, all sprites are deleted, and can reappear only if redefined by the SPRITE
subprogram.

4.24.6. Examples

100 CALL DELSPRITE(#3)
Deletes sprite number 3.

100 CALL DELSPRITE(#4,#3*C)
Deletes sprite number 4 and the sprite whose number is found by multiplying 3 by C.

100 CALL DELSPRITE(ALL)
Deletes all sprites.

MYARC Extended BASIC Il

4.25. DIM — Dimension

4.25.1. Format

DIM array-name (integerl [,... integer7))[, array-name ...] data-types

4.25.2. Cross Reference

DEFINT, OPTION BASE, REAL

4.25.3. Descri ption

The DIM instruction enables you to dimension (reserve space for) arrays with one to seven dimensions.
You can use DIM as either a program statement or a command.

The array-name must be a valid variable name. It cannot be used as the name of a variable or as the
name of another array. An array is either numeric or string, depending on the array-name.

The integer is the upper limit of element numbers in a dimension.

If a program includes an OPTION BASE 1 statement, the first element is element 1, so the number of
elements is equal to the integer plus 1.

A string array cannot have more than 16383 elements. For numeric arrays, a DEFINT array cannot have
more than 32767 elements and a REAL array cannot have more than 8191 elements. The number of

integers in parentheses following the array-name determines the number of dimensions (1-7) in the array.

You can optionally specify the data-type (DEFINT or REAL) of a numeric array by replacing DIM with
the data-type.

An error occurs if you try to dimension a particular array more than once.
Note that you cannot use both instruction formats (DIM and data-type) to dimension the same array.
You cannot use OPTION BASE as a command.

You can dimension as many arrays with one DIM instruction as you can fit in one input line.

@

TEXAS INSTRUMENTS
HOME COMPUTER

If you reference an array without first using a DIM instruction to dimension it, each dimension is
assumed to have 11 elements (elements 0-10), or 10 elements (elements 1-10) if your program includes
an OPTION BASE 1 statement.

If you use a DIM statement to dimension an array, the DIM statement must have a line number lower
than that of any reference to that array. DIM statements are interpreted during pre-scan and are not
executed.

A DIM statement can appear anywhere in your program, except as part of an IF THEN statement.
4.25.4. Referencin g an Array

To reference a specific element of an array, you must use subscripts. Subscripts are numeric expressions
enclosed in parentheses immediately following the reference to the array-name. An array reference must
include one subscript for each dimension in the array. If necessary, the value of a subscript is rounded
to the nearest integer.

4.25.5. Reservin g Space for Arra ys

When you use DIM as a program statement, the computer reserves space for arrays when you enter the
RUN instruction, before your program is actually run. If the computer cannot reserve space for an array
with the dimensions you specify, the message MEMORY FULL IN (LINE-NUMBER) is displayed, and the
command does not execute.

When you use DIM as a command, if the computer cannot reserve space for an array with the dimensions
you specify, the message MEMORY FULLis displayed and the command does not execute.

Until you place values in an array, each element in a string array is a null string and each element in a
numeric array has a value of zero.

4.25.6. Examples

100 DIM X$(30)
Reserves space in the computer's memory for 31 members of the array called X$.

100 DIM D(100),B(10,9)
Reserves space in the computer's memory for 101 members of the array called D and 110 (11
times 10) members of the array called B.

100 DEFINT B(10)
Reserves space in the computer's memory for 11 members of the array called B. However,
DEFINT specifies that the members can only be integers.

MYARC Extended BASIC Il

4.26. DISPLAY

4.26.1. Format
DISPLAY [print-list]
DISPLAY [AT(row, column)][BEEP][ERASE ALL]
[SIZE(numeric-expression NI: print-list]
4.26.2. Cross Reference
DISPLAY USING, GRAPHICS, MARGINS, PRINT
4.26.3. Descri ption

The DISPLAY instruction enables you to display numbers and strings on the screen. The numeric and/or
string expressions in the print-list can be constants and/or variables.

The options available with the DISPLAY instruction make it more versatile for screen output than is the
PRINT instruction. You can display data at any screen position, sound a tone when data items are
displayed, and clear the screen or a portion of the display row before displaying data.

You can use DISPLAY as either a program statement or a command.

The print-list consists of one or more print-items (items to be displayed on the screen) separated by
print-separators. See PRINT for an explanation of the print-items and print-separators that make up a

print-list.

In High-Resolution Mode, DISPLAY has no effect. See Appendix K.

on

TEXAS INSTRUMENTS
HOME COMPUTER

4.26.4. Options
You can enter the following options, separated by a space, in any order.

AT

The AT option enables you to specify the beginning of the display field. Row and column are
relative to the upper-left corner of the screen window defined by the margins. If you do not use
the AT option, the display field begins in the far left column of the bottom row of the current
screen window. Before a new line is displayed at the bottom of the window, the entire contents
of the window (excluding sprites) scroll up one line to make room for the new line. The contents
of the top line of the window scroll off the screen and are discarded. If you use the AT option and
your print-list includes a TAB function, the TAB location is relative to the beginning of the
display field. If you use the AT option and a print-item is too long to fit in the display field, either
the extra characters are discarded (if you use the SIZE option) or the print-item is moved to the
beginning of the next screen line (if you do not use the SIZE option).

BEEP
The BEEP option sounds a short tone when the data items are displayed.

ERASE ALL
The ERASE ALL option places a space character (ASCII code 32) in every character position in
the screen window before displaying the data.

SIZE
The SIZE option is a numeric-expression whose value specifies the number of character positions
to be cleared, starting from the beginning of the display field, before the data is displayed. If the
numeric-expression is greater than the number of characters remaining in the row (from the
beginning of the display field to the right margin), or if you do not use the SIZE option, the
display row is cleared from the beginning of the display field to the right margin.

4.26.5. Examples

100 DISPLAY AT(5,7).Y
Displays the value of Y at the fifth row, seventh column of the screen. It first clears row 5 from
column 7 to the right margin.

100 DISPLAY ERASE ALL:B
Puts the blank character into all positions within the current screen window before displaying
the value of B.

100 DISPLAY AT(R,C)SIZE(FIELDLEN)BEEP:X$
Displays the value of X$ at row R, column C. First it beeps and blanks FIELDLEN characters.

MYARC Extended BASIC Il

4.26.6. Program

The following program illustrates a use of DISPLAY. It enables you to position blocks at any screen
position to draw a figure or design.

Numbers must be entered as two digits (e.g. 1 would be "01" etc.). Do not press ENTER; the information
is accepted as soon as the keys are pressed.

This example is valid only in Pattern Mode.

100 CALL CLEAR

110 CALL COLOR(27,5,5)

120 DISPLAY AT(23,1):"ENTER ROW AND COLUMN:"

130 DISPLAY AT(24,1):"ROW:COLUMN:"

140 FOR COUNT=1 TO 2

150 CALL KEY(0,ROW(COUNT),S)

160 IF S=0 THEN 150

170 DISPLAY AT(24,5+COUNT)SIZE(1):STR$(ROW(COUNT)-48)
180 NEXT COUNT

190 FOR COUNT=1TO 2

200 CALL KEY(0,COLUMN(COUNT),S)

210 IF S=0 THEN 200

220 DISPLAY AT(24,16+COUNT)SIZE(1):STR$(COLUMN(COUNT)-48)
230 NEXT COUNT

240 ROWI=10*(ROW(1)-48)+ROW(2)-48

250 COLUMNI=10*(COLUMN(1)-48)+COLUMN(2)-48

260 DISPLAY AT(ROW1,COLUMNI)SIZE(1):CHR$(244)

270 GOTO 130

(Press CLEAR to stop the program.)

\I

TEXAS INSTRUMENTS
HOME COMPUTER

4.27. DISPLAY USING

4.27.1. Format

DISPLAY [option-list JUSING ; format-string ;[print-list 1, line-number
4.27.2. Cross Reference

DISPLAY, IMAGE, PRINT

4.27.3. Descri ption

The DISPLAY USING instruction enables you to define specific formats for numbers and strings you
display.

You can use DISPLAY USING as either a program statement or a command.

The format-string specifies the display format. The format-string is a string expression; if you use a string
constant, you must enclose it in quotation marks. See IMAGE for an explanation of format-strings.

You can optionally define a format-string in an IMAGE statement, as specified by the line-number.
See DISPLAY under "Options" for an explanation of the options AT, BEEP, ERASE ALL, and SIZE.
See PRINT for an explanation of the print-list and print-options.

The DISPLAY USING instruction is identical to the DISPLAY instruction with the addition of the
USING option, except that:

u You cannot use the TAB function.

You cannot use any print-separator other than a commalg,), except that the pring-list can end with
a semicolon (;).

4.27.4. Examples

100 N=23.43
110 DISPLAY AT(10,4):USING"##.##"N

Displays the value of N at the tenth row and fourth column, with the format "##.##", after first
clearing row 10 from column 4 to the right margin.

100 DISPLAY USING "##.##"N
Displays the value of N at the 24th row and first column, with the format "##.##".

MYARC Extended BASIC Il

4.28. DISTANCE sub program
4.28.1. Format

Two Sprites

CALL DISTANCE(# sprite-numberl 3 sprite-number2 , numeric-variable)

A Sprite and a Screen Pixel

CALL DISTANCE(# sprite-number , pixel-row , pixel-column |, numeric-variable)
4.28.2. Cross Reference

COINC, SPRITE

4.28.3. Descri ption

The DISTANCE subprogram enables you to ascertain the distance between two sprites or between a
sprite and a specified screen pixel.

The DISTANCE subprogram returns the square of the distance sought. (Note that this is not the same
as the distance specified by the "tolerance" in the COINC subprogram.)

The square of the distance is the sum of the square of the difference between pixel-rows and the square
of the difference between pixel-columns. The distance between the two sprites (or the sprite and the
screen pixel) is the square root of the number returned.

If the square of the distance is greater than 32767, the number returned is 32767.

4.28.4. Two Sprites

The distance between two sprites is considered to be the distance between the upper-left corners of the
sprites.

Sprite-numberl and sprite-number2 are numeric expressions whose values specify the numbers of the two
sprites as assigned in the SPRITE subprogram.

The number returned to the numeric-variable equals the square of the distance between two sprites.

O

TEXAS INSTRUMENTS
HOME COMPUTER

4.28.5. A Sprite and a Screen Pixel

The distance between a sprite and 8 screen pixel is considered to be the distance between the upper-left
corner of the sprite and the specified pixel.

Sprite-number is a numeric expression whose value specifies the number of the sprite as assigned in the
SPRITE subprogram.

The pixel-row and pixel-column are numeric expressions whose values specify the position of the screen
pixel.

The number returned to the numeric-variable equals the square of the distance between the sprite and
the screen pixel.

4.28.6. Examples

100 CALL DISTANCE(#3,#4,DIST)
Sets DIST equal to the square of the distance between the upper-left corners of sprite #3 and
sprite #4.

100 CALL DISTANCE(#4,18,89,D)
Sets D equal to the square of the distance between the upper-left corner of sprite #4 and position
18,89.

MYARC Extended BASIC Il

4.29. DRAW sub program

4.29.1. Format

CALL DRAW(ine-type , pixel-rowl , pixel-columnl | pixel-row2 , pixel-column2
[, pixel-row3 , pixel-column3 | pixel-row4 | pixel-column4 [,...]])

4.29.2. Cross Reference

CIRCLE, DCOLOR, DRAWTO, FILL, GRAPHICS, POINT, RECTANGLE, WRITE

4.29.3. Descri ption

The DRAW subprogram enables you to draw or erase lines between specified pixels.

The value of the numeric-expression line-type specifies the action taken by the DRAW subprogram.
TYPE ACTION
1 Draws a line of the foreground-color specified by the DCOLOR subprogram. This is

accomplished by turning on each pixel in the specified line.

0 Erases a line. This is accomplished by turning off each pixel in the specified line.

2 Reverses the status of each pixel on the specified line. (If a pixel is on, it is turned off; if
a pixel is off it is turned on.) This effectively reverses the color of the specified line.

Pixel-row and pixel-column are numeric expressions whose values specify the pixels to be connected by
the line. You must specify at least two pixels to define the beginning and end points of a line.

Pixel-row must have a value from 1 to 192. Pixel-column must have a value from 1 to 256.

You can optionally draw more lines by specifying additional pairs of pixels. The lines are not connected,
each line extends from the first pixel of the pair to the second pixel of the pair. You must specify an even
number of pixels.

The last pixel you specify becomes the current position used by the DRAWTO subprogram.

DRAW can be used only in High-Resolution Mode. An error results if you use DRAW in Pattern or Text
Mode.

In High-Resolution Mode the computer divides each pixel-row into 32 groups of 8 pixels each. (This is
most obvious when you assign a background color other than cyan or transparent.) The computer can
assign 1 foreground color and 1 background color, from among the 16 available colors, to each 8-pixel
group.

TEXAS INSTRUMENTS
HOME COMPUTER

4.29.4. Programs

The following program draws a large triangle on the right of the screen.

100 CALL GRAPHICS(3)

110 CALL CLEAR

120 CALL DRAW(1,19,185,97,115)
130 CALL DRAW(1,19,185,97,255)
140 CALL DRAW(1,97,115,97,255)
150 GOTO 150

(Press CLEAR to stop the program.)

The next program uses a FOR-NEXT loop to draw a pattern of lines.

100 CALL CLEAR

110 CALL GRAPHICS(3)

120 CALL SCREEN(6)

130 FOR X=1 TO 255 STEP 5

140 CALL DRAW(1,1,X,128,256-X)
150 NEXT X

160 GOTO 160

(Press CLEAR to stop the program.)

MYARC Extended BASIC Il

4.30. DRAWTO sub program

4.30.1. Format

CALL DRAWTO(ine-type , pixel-row | pixel-column [, pixel-row2 , pixel-column2 [,...]])
4.30.2. Cross Reference

CIRCLE, DCOLOR, DRAW, FILL, GRAPHICS, POINT, RECTANGLE, WRITE

4.30.3. Descri ption

The DRAWTO subprogram enables you to draw or erase lines between the current position and the
specified pixels.

Line-type is a numeric expression whose value specifies the action taken by the DRAWTO subprogram.
TYPE ACTION
1 Draws a line of the foreground-color specified by the DCOLOR subprogram. This is
accomplished by turning on each pixel in the specified line.

0 Erases a line. This is accomplished by turning off each pixel in the specified line.

2 Reverses the status of each pixel on the specified line. (If a pixel is on, it is turned off; if
a pixel is off, it is turned on.) This effectively reverses the color of the specified line.

The line drawn by DRAWTO extends from the pixel in the current position to the pixel specified by the
values of the numeric expressions pixel-row and pixel-column, which becomes the new current position.

You can optionally draw more lines by specifying additional sets of pixels. A line is drawn to each specified
pixel from the new current position (the previously specified pixel).

Pixel-row must have a value from 1 to 192, pixel-column must have a value from 1 to 256.

The current position is the last pixel specified the last time the DRAW or the DRAWTO subprogram was
called. When you enter MYARC Extended BASIC II, the current position is the intersection of pixel-row
1 and pixel-column 1.

This default current position is restored only when you change graphics mode.

DRAWTO can be used only in High-Resolution Mode. An error results if you use DRAWTO in Pattern
or Text Mode.

TEXAS INSTRUMENTS
HOME COMPUTER

In High-Resolution Mode the computer divides each pixel-row into 32 groups of 8 pixels each. (This is
most obvious when you assign a background color other than cyan or transparent.) The computer can
assign 1 foreground color and 1 background color (from among the 16 available colors), to each 8-pixel
group.

4.30.4. Program

The following program uses DRAWTO to create a pattern across the top of the screen.

100 CALL GRAPHICS(3)

110 CALL CLEAR

120 A=20::B=20

130 CALL DRAW(1,A,B,A,B)
140 FOR X=1 TO 10

150 B=B+20

160 CALL DRAWTO(L,A,B)
170 CALL DRAWTO(1,A+20,B-20)
180 CALL DRAWTO(1,A+20,B)
190 CALL DRAWTO(1,A,B-20)
200 NEXT X

210 GOTO 210

(Press CLEAR to stop the program.)

MYARC Extended BASIC Il

4.31. END

4.31.1. Format
END

4.31.2. Cross Reference

STOP

4.31.3. Descri ption

The END statement stops the execution of your program.

In addition to terminating program execution, END causes the computer to perform the following
operations:

L] It closes all open files.

It restores the default character definitions of all characters.

If the computer is in High-Resolution Mode, it restores the default graphics mode (Pattern) and
margin settings (3, 30, 1, 24).

It restores the default foreground color (black) and background color (transparent) to all
characters.

It restores the default screen color (cyan).

It deletes all sprites.

It reacts the sprite magnification level to 1.

The graphics colors (see DCOLOR) and current position (see DRAWTO) are not affected. If the computer
is in Pattern or Text Mode, the graphics mode and margin settings remain unchanged.

An END statement is not necessary to stop your program; the program automatically stops after the
highest numbered line is executed.

END can be used interchangeably with the STOP statement, except that you cannot use STOP after a
subprogram.

TEXAS INSTRUMENTS
HOME COMPUTER

4.32. EOF

4.32.1. Format

EOF(file-number)

4.32.2. Type

DEFINT

4.32.3. Cross Reference

ON ERROR

4.32.4. Descri ption

The EOF function returns a value indicating whether there are records remaining in a specified file.

The file-number is a numeric expression whose value specifies the number of the file as assigned in its
OPEN instruction.

The value returned by the EOF function depends on the current file position. EOF always treats a file
as if it were being accessed sequentially, even if it has been opened for relative access.

VALUE MEANING

0 Not end-of-file.

+1 Logical end-of-file: No records remaining.

-1 Physical end-of-file: No records remaining, and no space available for more

records (storage medium full).
The EOF function cannot be used with an audio cassette.

For more information about using EOF with a particular device, refer to the owner's manual that comes
with that device.

MYARC Extended BASIC Il

4.32.5. Examples

100 PRINT EOF(3)
Prints a value according to whether you are at the end of the file opened as #3.

100 IF EOF(27)<>0 THEN 1150
Transfers control to line 1150 if you are at the end of the file opened as #27.

100 IF EOF(27) THEN 1150
Transfers control to line 1150 if you are at the end of the file opened as #27.

\I

TEXAS INSTRUMENTS
HOME COMPUTER

4.33. ERR sub program — Error

4.33.1. Format

CALL ERR(error-code , error-type [, error-severity [line-number 1))

4.33.2. Cross Reference

ON ERROR

4.33.3. Descri ption

The ERR subprogram enables you to analyze the conditions that caused a program error.
ERR is normally called from a subroutine accessed by an ON ERROR statement.

The ERR subprogram returns the error-code and error-type, and optionally the error-severity and
line-number, of the most recent "uncleared" program error.

An error is "cleared" when another program error occurs or when the program ends. A RETURN
statement in a subroutine accessed by an ON ERROR statement also clears the error.

ON ERROR will not trap an error caused by the RUN command.

ERR returns a two-digit or three-digit number to the numeric variable error-code. See Appendix oJ for a
list of error codes and the conditions that cause them to be displayed.

An error-code of 130 indicates an input/output (I/O) error.
An error-code of 0 indicates that no error has occurred.
The error-type is a numeric variable.

When an I/O error occurs, the value returned in error-type is the number (as assigned in an OPEN
instruction) of the file in which the error occurred.

A negative error-type indicates that the error occurred during program execution.

An error-type of 0 indicates that no error has occurred.

MYARC Extended BASIC Il

4.33.4. Options
The value returned to the numeric variable error-severity is always nine.

The value returned to the numeric variable line-number is the line number of the program statement
that was executing when the error occurred.

4.33.5. Examples

100 CALL ERR(A,B)
Sets A equal to the error-code and B equal to the error-type of the most recent error.

100 CALL ERR(W,X,Y,2)
Sets W equal to the error-code, X equal to the error-type, Y equal to the error-severity, and Z
equal to the line-number of the most recent error.

4.33.6. Program

The following program illustrates the use of CALL ERR.

100 ON ERROR 130
110 CALL SCREEN(18)
120 STOP

130 CALL ERR(W,X,Y,2Z)
140 PRINT W;X;Y;Z

150 RETURN NEXT
RUN

79-19110

An error is caused in line 110 by an improper screen-color number. Because of line 100, control is
transferred to line 130. Line 140 prints the values obtained. The 79 indicates that a bad value was
provided, the -1 indicates that the error occurred during program execution, the 9 is the error-severity,
and the 110 indicates that the error occurred in line 110.

O

TEXAS INSTRUMENTS
HOME COMPUTER

4.34. EXP function — Ex ponential

4.34.1. Format

EXP(numeric-expression)

4.34.2. Type

REAL

4.34.3. Cross Reference

LOG

4.34.4. Descri ption

The EXP function returns the value of e raised to the power of the value of the numeric-expression.
EXP is the inverse of the LOG function.

The value of e is 2.718281828459.

4.34.5. Examples

100 Y=EXP(7)
Assigns to Y the value of e raised to the seventh power, which yields 1096.6331584290.

100 L=EXP(4.394960467)
Assigns to L the value of e raised to the 4.394960467 power, which yields 81.0414268887.

MYARC Extended BASIC Il

4.35. FILL sub program

4.35.1. Format

CALL FILL(pixel-row , pixel-column [, character-code 1)

4.35.2. Cross Reference

CIRCLE, DCOLOR, DRAW, DRAWTO, GRAPHICS, POINT, RECTANGLE, WRITE
4.35.3. Descri ption

The FILL subprogram enables you to fill in the area surrounding a specified pixel with a specified pattern
and/or color.

Pixel-row and pixel-column are numeric expressions whose values specify the pixel that you want to
surround with a color or pattern.

Character-code is a numeric expression with a value from 0-215 specifying the character with which to
fill the area surrounding the specified pixel.

Pixel-row must have a value from 1 to 192, pixel-column must have a value from 1 to 256.
If you do not specify a character-code, the default character is a solid square.

The color of the pattern that surrounds the specified pixel is the foreground color specified by the
DCOLOR subprogram. If you have not called the DCOLOR subprogram, the default fill color is black.

The area surrounding the specified pixel is filled with the fill pattern until a screen edge or a foreground
pixel (a pixel that is turned on) is encountered.

The boundaries of the area to be filled can be defined by lines drawn with the CIRCLE, DRAW,
DRAWTO, POINT, RECTANGLE, WRITE subprogram.

FILL can be used only in High-Resolution Mode. An error results if you use FILL in Pattern or Text
Mode.

In High-Resolution Mode the computer divides each pixel-row into 32 groups of 8 pixels each. The
computer can assign a foreground color and a background color (from among the 16 available colors) to
each 8-pixel group.

-

TEXAS INSTRUMENTS
HOME COMPUTER

4.35.4. Program

The following program divides the upper portion of the sereen into four horizontal columns and uses

FILL to color them.

100 CALL CLEAR

110 CALL GRAPHICS(3)

120 CALL DRAW(1,48,0,48,256)
130 CALL DRAW(1,96,0,96,256)
140 CALL DRAW(1,144 0,144,256)
150 CALL DCOLOR(7,8)

160 CALL FILL(43,1)

170 CALL DCOLOR(11,8)

180 CALL FILL(90,1)

190 CALL DCOLOR(3,8)

200 CALL FILL(138,1)

210 CALL DCOLOR(6,8)

220 CALL FILL(188,1)

230 GOTO 230

(Press CLEAR to stop the program.)

MYARC Extended BASIC Il

4.36. FOR TO

4.36.1. Format

FOR control-variable =initial-value TO limit [STEP increment |
4.36.2. Cross Reference

NEXT

4.36.3. Descri ption

The FOR TO instruction is used with the NEXT instruction to form a FOR-NEXT loop, which you can
use to control a repetitive process.

You can use FOR TO as either a program statement or a command.
4.36.4. FOR-NEXT Loo p Execution

When a FOR TO instruction is executed, the initial-value is assigned to the control-variable. The
computer executes instructions until it encounters a NEXT instruction (the group of instructions
between the FOR TO and NEXT instructions are known as a "FOR-NEXT loop"). However, if the
initial-value is greater than the limit (or, if you specify a negative increment, if the initial-value is less
than the limit) the FOR-NEXT loop is not executed.

When the NEXT instruction is encountered, the increment is added to the control-variable; if you do not
specify an increment, the control-variable is incremented by 1. Note that if the increment is negative, the
value of the control-variable is decreased.

The control-variable in the NEXT instruction must be the same as the control-variable in the FOR TO
instruction. The new value of the control-variable is then compared to the limit. If you specify a positive
increment (or if you do not specify an increment), the FOR-NEXT loop is repeated if the control-variable
is less than or equal to the limit. If you specify a negative increment, the FOR-NEXT loop is repeated if
the control-variable is greater than or equal to the limit.

If the condition for repeating the FOR-NEXT loop is met, control passes to the instruction immediately
following the FOR TO instruction. If the condition is not met, the FOR-NEXT loop terminates (control
passes to the statement immediately following the NEXT statement).

W

TEXAS INSTRUMENTS
HOME COMPUTER

4.36.5. Specifications

The value of the numeric expression control-variable is re-evaluated each time the NEXT instruction is
executed. If you change its value while a FOR-NEXT loop is executing, you may affect the number of
times the loop is repeated. A FOR-NEXT loop executes much faster if the control-variable has been
declared as a DEFINT than it does if the control-variable is REAL.

The control-variable cannot be an element of an array.

The initial-value is a numeric expression.

The value of the numeric expression limit is not re-evaluated during the execution of a FOR-NEXT loop.
If you change its value while a FOR-NEXT loop is executing, you do not affect the number of times the
loop is repeated.

The value of the optional numeric expression increment is not re-evaluated during the execution of a
FOR-NEXT loop. If you change its value while a FOR-NEXT loop is executing, you do not affect the
number of times the loop is repeated. The increment cannot be zero.

4.36.6. Nested FOR-NEXT Loo ps

FOR-NEXT loops may be "nested"; that is, one FOR-NEXT loop may be contained wholly within another.
You must observe the following conventions:

L] Each FOR TO instruction must be paired with a NEXT instruction.

Each nested loop must use a different control-variable.

Ifa FOR-NEXT loop contains any portion of another FOR-NEXT loop, it must contain all of that
FOR-NEXT loop. If a FOR-NEXT loop contains only part of another FOR-NEXT loop, an error
occurs, and the message NEXT WITHOUT FORiIs displayed. If the FOR-NEXT loop is part of a
program, the computer also displays the line-number where the error occurred.

MYARC Extended BASIC Il

4.36.7. FOR TO as a Program Statement

After you enter the RUN command, but before your program is actually run, the computer verifies that
you have equal numbers of FOR TO and NEXT statements. If the numbers are not equal, the message
FOR-NEXT NESTINGis displayed and the program is not run.

You can exit a FOR-NEXT loop by using a GOTO, ON GOTO, or IF THEN statement. If you use one of
these statements to enter a loop, you could cause an error or create an infinite loop.

A FOR TO statement cannot be part of an IF THEN statement.
4.36.8. FOR TO as a Command

If you use FOR TO as a command, it must be part of a multiple-statement line, a NEXT instruction must
also be part of the same line.

After you press ENTER to execute the command, but before the command is actually executed, the
computer verifies that you have equal numbers of FOR TO and NEXT instructions. If the numbers are
not equal, the message FOR-NEXT NESTINGis displayed and the command is not executed.

4.36.9. Examples

100 FOR A=1 TO5 STEP 2

110 PRINT A

120 NEXT A
Executes the statements between this FOR and NEXT A three times, with A having values of 1,
3, and 5. After the loop is finished, A has a value of 7.

100 FOR J=7 TO -5 STEP -.5

110 PRINT J

120 NEXT J
Executes the statements between this FOR and NEXT J 25 times, with J having values of 7, 6.5,
6, ..., -4, -4.5, and -5. After the loop is finished, J has a value of -5.5.

ol

TEXAS INSTRUMENTS
HOME COMPUTER

4.36.10. Program

The following program illustrates a use of the FOR-TO-STEP statement. There are three FOR-NEXT
loops, with control-variables of CHAR, ROW, and COLUMN.

100 CALL CLEAR

110 D=0

120 FOR CHAR=33 TO 63 STEP 30

130 FOR ROW=1+D TO 21+D STEP 4
140 FOR COLUMN=1+D TO 29+D STEP 4
150 CALL VCHAR(ROW,COLUMN,CHAR)
160 NEXT COLUMN

170 NEXT ROW

180 D=2

190 NEXT CHAR

200 GOTO 200

(Press CLEAR to stop the program.)

MYARC Extended BASIC Il

4.37. FREESPACE function

4.37.1. Format

FREESPACEQumeric-expression)
4.37.2. Type

REAL

4.37.3. Descri ption

The FREESPACE function returns a number representing, in bytes, the amount of memory space
available for MYARC Extended BASIC II programs and data.

The value of the numeric-expression must be zero. Other values are reserved for possible future use.
4.37.4. Garbage Collection

Before FREESPACE returns a value, the computer executes an activity called "garbage collection":

L] All "inactive" strings are deleted. Strings become inactive when they are not associated with a

variable. A string may be created by the computer for its internal use; it becomes inactive when
no longer needed.

All "active" strings (strings that are still associated with variables) are moved to a contiguous area
at the low end of memory. This leaves all the available memory in one large, contiguous block.

The computer occasionally performs garbage collection by itself, i.e., when no memory is available
because of an excess number and size of inactive strings.

4.37.5. Example

PRINT FREESPACE(0)
Prints a value that indicates the amount of available memory.

\I

TEXAS INSTRUMENTS
HOME COMPUTER

4.38. GCHAR sub program — Get Character
4.38.1. Format

Pattern and Text Modes

CALL GCHAR(row, column , numeric-variable)

High-Resolution Mode

CALL GCHAR(pixel-row , pixel-column , numeric-variable)
4.38.2. Cross Reference

GRAPHICS, HCHAR, VCHAR

4.38.3. Descri ption

The GCHAR subprogram enables you to ascertain the character code of a character on the screen or the
status of a screen pixel.

The meaning of the value returned to the specified numeric-variable varies according to the graphics
mode.

4.38.4. Pattern and Text Modes
Row and column are numeric expressions whose values specify a character position on the screen.
The value of row must be greater than or equal to 1 and less than or equal to 24.

The value of column must be greater than or equal to 1. In Pattern Mode, column must be less than or
equal to 32; in Text Mode, column must be less than or equal to 40.

GCHAR is not affected by margin settings. Row and column are relative to the upper-left corner of the
screen, not to the corner of the window defined by the margins.

The character code of the character at the specified position is returned to the numeric-variable. See
Appendix B for a list of ASCII character codes.

MYARC Extended BASIC Il

4.38.5. High-Resolution Mode
The pixel-row and pixel-column are numeric-expressions whose values specify a screen pixel position.

The value of the numeric expression pixel-row must be greater than or equal to 1. In High-Resolution
Mode, pixel-row must be less than or equal to 192.

The value of the numeric expression pixel-column must be greater than or equal to 1 and less than or
equal to 256.

The status of the specified screen pixel is indicated by the value returned to the numeric-variable. If the
pixel is on, the value returned is 1; if the pixel is off, the value returned is 0.

4.38.6. Examples

100 CALL GCHAR(12,16,X)
Assigns to X the ASCII code of the character at row 12, column 16 in Pattern and Text Modes.

100 CALL GCHAR(R,C,K)
Assigns to K the ASCII code of the character that is in row R, column C in Pattern and Text
Modes.

O

TEXAS INSTRUMENTS
HOME COMPUTER

4.39. GOSUB — Go to a Subroutine

4.39.1. Format

GOSUBYIine-number
GO SUB

4.39.2. Cross Reference
ON GOSUB, RETURN
4.39.3. Descri ption

The GOSUB statement transfers program control to the specified subroutine. A subroutine frequently
is used to perform a specific operation several times in the same program.

The line-number is a numeric expression whose value specifies the program statement at which the
subroutine begins.

Usea RETURN statement toreturn program control to the statement immediately following the GOSUB
statement that called the subroutine.

To avoid unexpected results, it is recommended that you exercise care if you use GOSUB to transfer
control to or from a subprogram or into a FOR-NEXT loop.

Subroutines may be recursive (self-referencing). To avoid constructing infinite loops, it is recommended
that you exercise care when using recursive subroutines.

4.39.4. Nested Subroutines

Subroutines may be "nested"; that is, within a subroutine you can use GOSUB to transfer control to
another subroutine. Because RETURN restores program control to the statement immediately following
the most recently executed GOSUB, it is important to exercise care when using nested subroutines.

For example, you might use GOSUB in your main program to transfer control to a subroutine. When the
computer encounters a RETURN in the second subroutine it transfers program control back to the
statement immediately following the GOSUB in the first subroutine. Then, when a RETURN is
encountered in the first subroutine, program control returns to the statement following the GOSUB in
your main program.

MYARC Extended BASIC Il

4.39.5. Example

100 GOSUB 200
Transfers control to statement 200. That statement and the ones up to RETURN are executed
and then control returns to the statement after the calling statement.

4.39.6. Program

The following program illustrates a use of GOSUB. The subroutine at line 260 figures the factorial of the
value of NUMB. The whole program figures the solution to the equation

NUMB=X!/(Y*(X-Y)!)

where the exclamation point means factorial. This formula is used to figure certain probabilities. For
instance, if you enter X as 52 and Y as 5, you'll find that the number of possible five-card poker hands is
2,598,960. Both numbers entered must be positive integers less than or equal to 69.

100 CALL CLEAR

110 INPUT "ENTER X AND Y: ":X,Y

120 IF X<Y THEN 110

130 IF X>69 OR Y>69 THEN 110

140 IF X<0 THEN PRINT "NEGATIVE"::GOTO 110 ELSE NUMB=X
150 GOSUB 260

160 NUMERATOR=NUMB

170 IF Y<O THEN PRINT "NEGATIVE"::GOTO 110 ELSE NUMB=Y
180 GOSUB 260

190 DENOMINATOR=NUMB

200 NUMB=X-Y

210 GOSUB 260

220 DENOMINATOR=DENOMINATOR*NUMB
230 NUMB=NUMERATOR/DENOMINATOR
240 PRINT "NUMBER IS";NUMB

250 STOP

260 REM CALCULATE FACTORIAL

270 IF NUMB<2 THEN NUMB=1::GOTO 320
280 MULT=NUMB-1

290 NUMB=NUMB*MULT

300 MULT=MULT-1

310 IF MULT>1 THEN 290

320 RETURN

-

TEXAS INSTRUMENTS
HOME COMPUTER

4.40. GOTO

4.40.1. Format

GOTOline-number
GO TO

4.40.2. Cross Reference

ON GOTO

4.40.3. Descri ption

The GOTO statement unconditionally transfers program control to the specified program statement.

The line-number is a numeric expression whose value specifies the program statement to which
unconditional program control is transferred.

To avoid unexpected results, it is recommended that you exercise care if you use GOTO to transfer
control to or from a subroutine or into a FOR-NEXT loop.

4.40.4. Program

The following program shows the use of GOTO in line 160. Anytime that line is reached, the program
executes line 130 next and proceeds from that new point.

100 REM ADD 1 THROUGH 100

110 ANSWER=0

120 NUMB=1

130 ANSWER=ANSWER+NUMB

140 NUMB=NUMB+1

150 IF NUMB>100 THEN 170

160 GOTO 130

170 PRINT "THE ANSWER IS";ANSWER
RUN

THE ANSWER IS 5050

MYARC Extended BASIC Il

4.41. GRAPHICS sub program

4.41.1. Format

CALL GRAPHICS(graphics-mode)
4.41.2. Cross Reference

CHAR, CIRCLE, COLOR, DCOLOR, DRAW, DRAWTO, FILL, MARGINS, POINT, RECTANGLE,
SCREEN, WRITE

4.41.3. Descri ption

The GRAPHICS subprogram enables you to select the graphics-mode that offers you the combination of
text and graphics capabilities that best suits the particular needs of your program.

Graphics-mode is a numeric expression whose value is from 1 to 3, specifying one of the three graphics
modes available in MYARC Extended BASIC II.

NUMBER MODE

1 Pattern
2 Text
3 High-Resolution

When you enter MYARC Extended BASIC II, the computer is in Pattern Mode.

@

TEXAS INSTRUMENTS
HOME COMPUTER

Whenever you use the CALL GRAPHICS subprogram, the computer does the following:

u Clears the entire screen.

Restores the default character definitions of all characters.

Restores the default foreground color (black) and background color (transparent) to all
characters.

Restores the default graphics foreground color (black) and background color (transparent).

Restores the default screen color (cyan).

Deletes all sprites.

Resets all sprites.

Resets the sprite magnification level to 1.

Restores the default screen margins (3, 30, 1, 24)

Restores the default current position (pixel-row 1, pixel-column 1).

Turns off all sound.
4.41.4. Pattern Mode

In Pattern Mode, the screen is considered to be a grid 24 characters high and 32 characters wide. Each
character is 8 pixels high and 8 pixels wide. The 256 available characters are divided into 32 sets of 8
characters each. You can use the COLOR subprogram to assign a foreground and a background color
from among the 16 available colors, to each character set.

In Pattern Mode, you have access to sprites.

The DCOLOR subprogram has no effect in Pattern Mode. If you use a CIRCLE, DRAW, DRAWTO, FILL,
POINT, RECTANGLE, or WRITE subprogram, the error message GRAPHICS MODE ERROR IN (LINE
NUMBER)s displayed.

MYARC Extended BASIC Il

4.41.5. Text Mode
In Text-Mode, the screen is considered to be a grid 24 characters high and 40 characters wide. Each
character is 8 pixels high and 6 pixels wide. (Note that a character in Text Mode is two pixels narrower

than a character in any other graphics mode.)

You can use the SCREEN subprogram to assign one foreground and one background color from among
the 16 available colors. The colors you select are assigned to all 256 characters.

In Text Mode, you do not have access to sprites (the SPRITE subprogram has no effect in Text Mode).
Using the COLOR subprogram to assign colors to sprites has no effect.

The DCOLOR subprogram has no effect in Text Mode. If you use a CIRCLE, DRAW, DRAWTO, FILL,
POINT, RECTANGLE, or WRITE subprogram, the error message GRAPHICS MODE ERROR IN (LINE
NUMBER)s displayed.

4.41.6. High Resolution Mode

In High-Resolution Mode, you have access to sprites, but not to sprite motion.

In High-Resolution Mode, the screen is considered to be a grid 192 pixels high and 256 pixels wide.

You can use the DCOLOR subprogram to assign colors to the graphics you display.

Use the COLOR subprogram only to assign colors to sprites; any other use of the COLOR
subprogram causes and error.

In High-Resolution Mode, you have access to sprites.

ACCEPT, DISPLAY, and DISPLAY USING have no effect in High-Resolution Mode. INPUT, LINPUT,
PRINT, and PRINT USING are functional only if they are used to access files. Use the command
"WRITE" to display messages in High-Resolution Mode. For more information dealing with the
restrictions of High-Resolution Mode. see Appendix R.

When a program running in High-Resolution Mode stops running, the computer returns to Pattern Mode.
4.41.7. A Note on Hi gh Resolution Gra phics

In High-Resolution Mode the computer divides each pixel-row into 32 groups of 8 pixels. The computer
can assign a foreground color and a background color (from among the 16 available colors) to each 8-pixel
group.

o

TEXAS INSTRUMENTS
HOME COMPUTER

4.41.8. Example

100 CALL GRAPHICS(3)

As a statement, changes the graphics mode to High-Resolution during program execution until
execution stops or until another statement changes the Graphics Mode to something else.

MYARC Extended BASIC Il

4.42. HCHAR sub program — Horizontal Character

4.42.1. Format

CALL HCHAR(row, column , character-code [, number of repetitions)

4.42.2. Cross Reference

DCOLOR, GCHAR, GRAPHICS, VCHAR

4.42.3. Descri ption

The HCHAR subprogram enables you to place a character on the screen and repeat it horizontally.

Row and column are numeric expressions whose values specify the position on the screen where the
character is displayed.

The value of row must be greater than or equal to 1, row must be less than or equal to 24. The value of
column must be greater than or equal to 1. In Pattern or High-Resolution Mode, the column must be less
than or equal to 32; in Text Mode, column must be less than or equal to 40.

HCHAR is not affected by margin settings.

Character-code is a numeric expression with a value from 0-255, specifying the number of the character.
See Appendix B for a list of ASCII character codes.

The optional number-of-repetitions is anumeric expression whose value specifies the number of times the
character is repeated horizontally. If the repetitions extend past the end of a row they continue from the
first character of the next row. If the repetitions extend past the end of the last row they continue from
the first character of the first row.

If you use HCHAR to display a character on the screen, and then later use CHAR, COLOR, or DCOLOR
to change the appearance of that character, the result depends on the Graphics Mode:

L] In Pattern and Text Modes, the displayed character changes to the newly specified pattern and/or
color(s).
L] In High-Resolution Mode the displayed character remains unchanged.

TEXAS INSTRUMENTS
HOME COMPUTER

4.42.4. Examples

100 CALL HCHAR(12,16,33)
Places character 33 (an exclamation point) in row 12, column 16.

100 CALL HCHAR(1,1,ASC("!"),768)

Places an exclamation point in row 1, column 1, and repeats it 768 times, which fills the screen
in Pattern Mode.

100 CALL HCHAR(R,C,K,T)

Places the character with an ASCII code specified by the value of K in row R, column C, and
repeats it T times.

MYARC Extended BASIC Il

4.43. IF THEN ELSE

4.43.1. Format

IF relational-expression THEN line-numberl [ELSE line-number2]
numeric-expression statement1 statement2

4.43.2. Descri ption

The IF THEN statement enables you to transfer program control to a specified program statement, or
to execute a statement or series of statements, based on the status of a condition you specify.

The condition tested by the IF THEN statement can be either a relational-expression or a
numeric-expression.

A relational-expression is "true" if it accurately describes the relationship between the variables it
references; otherwise, it is "false".

A numeric-expression is "false" if it has a value of zero; otherwise, it is "true".
The action specified following THEN or ELSE can be either a line-number or a statement.

If the conditional requirement is met and you specify a line-number, program control is transferred to
the program statement located at that line-number.

If the conditional requirement is met and you specify a statement, the specified statement is executed.
The statement may be either a single program statement or a series of program statements separated by
a double colon (::) statement separator symbol.

If the tested condition is "true", the computer performs the action specified following THEN.
If the tested condition is "false" and you use the ELSE option, the computer performs the action specified

following ELSE. Note: A statement separator symbol (::) must not immediately precede ELSE, as this
causes a syntax error.

O

TEXAS INSTRUMENTS
HOME COMPUTER

If the tested condition is "false" and you do not use the ELSE option, there are three possibilities:

L IF THEN is followed by a statement, program execution proceeds with the next program line.

IF THEN is followed by a line-number only, program execution proceeds with the next program
line.

IF THEN is followed by a line-number and a statement separator, program execution proceeds
with the statements after the statement separator. Note: In this case, the statement separator
symbol functions as an implied ELSE.

An IF THEN statement cannot contain a DEF, DIM, FOR, NEXT, OPTION BASE, SUB, or SUBEND
instruction.

4.43.3. Examples

100 IF X>5 THEN GOSUB 300 ELSE X=X+5
If X is greater than 5, then 300 is executed. When the subroutine is ended control returns to the
line following this line. If X is 5 or less, X is set equal to X+5 and control passes to the next line.

100 IF Q THEN C=C+1::GOTO 500 ELSE L=L/C::GOTO 300
If Q is not zero, then C is set equal to C+1 and control is transferred to line 500. If Q is zero, then
L is set equal to L/C and control is transferred to line 300.

100IF A$="Y"THEN COUNT=COUNT+1::DISPLAY AT(24,1):"HERE WE GO AGAIN!"::GOTO 300
If A$ is not equal to "Y", then control passes to the next line. If A$ is equal to "Y", then COUNT
is incremented by 1, a message is displayed, and control is transferred to line 300.

100IFHOURS=40THENPAY =HOWRS*WAGEELSEPAY=HOURS*WAGE+.5*WAGE*(HOURS-40)::0T=1
IfHOURS isless than or equal to 40, then PAY is set equal to HOURS*WAGE and control passes
to the next line. If HOURS is greater than 40, then PAY is set equal to
HOURS*WAGE+.5*WAGE*(HOURS-40), OT is set equal to 1, and control passes to the next
line.

100 IF A=1 THEN IF B=2 THEN C-3 ELSE D=4 ELSE E=5
If A is not equal to 1, then E is set equal to 5 and control passes to the next line. If A is equal to
1 and B is not equal to 2, then D is set equal to 4 and control passes to the next line. If A is equal
to 1 and B is equal to 2, then C is set equal to 3 and control passes to the next line.

MYARC Extended BASIC Il

4.43.4. Program

The following program illustrates a use of IF-THEN-ELSE. It accepts up to 1000 numbers ant then prints
then in order from smallest to largest.

100 CALL CLEAR

110 DIM VALUE(1000)

120 PRINT "ENTER VALUES TO BE SORTED.":"ENTER '9999' TO END ENTRY."
130 FOR COUNT=1 TO 1000

140 INPUT VALUE(COUNT)

150 IF VALUE(COUNT)=9999 THEN 170

160 NEXT COUNT

170 COUNT=COUNT-1

180 PRINT "SORTING."

190 FOR SORT1+1 TO COUNT

200 FOR SORT2=SORT1+1 TO COUNT

210 IF VALUE(SORT1)>VALUE(SORT2) THEN
TEMP=VALUE(SORT1)::VALUE(SORT1)=VALUE(SORT2)::VALUE(SORT2)=TEMP
220 NEXT SORT2

230 NEXT SORT1

240 FOR SORTED=1 TO COUNT

250 PRINT VALUE(SORTED)

260 NEXT SORTED

-

TEXAS INSTRUMENTS
HOME COMPUTER

4.44. IMAGE

4.44.1. Format

IMAGE format-string

4.44.2. Cross Reference
DISPLAY USING, PRINT USING
4.44.3. Descri ption

The IMAGE statement enables you to specify the format in which numbers or strings are printed or
displayed by a PRINT USING or DISPLAY USING statement.

The format-string is a string constant.
A format-string containing a quotation mark or leading or trailing spaces must be enclosed in quotation
marks. A format-string included in a PRINT-USING or DISPLAY-USING statement rather than as part

of an image statement) must be enclosed in quotation marks.

Any character can be part of a format-string. Certain combinations of characters are interpreted as
format-fields, as described below.

An IMAGE statement is not executed.

An IMAGE statement cannot be part of a multiple-statement line.

MYARC Extended BASIC Il

4.44.4. Format-Fields

A format-string can consist of one or more format-fields, each specifying the format of one print-item.
Format-fields can be separated by any character except a decimal point or a pound sign.

A format-field may consist of the following characters:

A pound sign (#) is replaced by a character from a print-item in the print-list of a PRINT USING
or DISPLAY USING instruction. Allow one pound sign for each digit or character; allow one
pound sign for the minus sign if necessary. If you to not allow as many pound signs as are
necessary to represent the print-item, each pound sign is replaced by an asterisk (*). If you use
more pound signs than are necessary to represent the print-item, each pound sign is replaced by
a space. Added spaces precede a number (which right-justifies the number); added spaces follow
a string (which left-justifies the string).

To indicate that a number is to be given in scientific notation, circumflexes (™) must be given
for the E and power numbers. There must be four or five circumflexes, and 10 or fewer characters
(minus sign, pound signs, and decimal point) when using the E format.

The decimal point separates the whole and fractional portions of numbers, and is printed where
it appears in the IMAGE statement.

All other letters, numbers, and characters are printed exactly as they appear in the IMAGE statement.

Format-string may be enclosed in quotation marks. If it is not enclosed in quotation marks, leading and
trailing spaces are ignored. However, when used directly in PRINT.. .USING or DISPLAY. . .USING, it
must be enclosed in quotation marks.

Each IMAGE statement may have space for many images, separated by any character except a decimal
point. If more values are given in the PRINT...USING or DISPLAY...USING statement than there are
images, then the images are reuses, starting at the beginning of the statement.

If you wish, you may put format-string directly in the PRINT...USING or DISPLAY...USING statement
immediately following USING. However, if a format-string is used often, it is more efficient to refer to
an IMAGE statement.

@

TEXAS INSTRUMENTS
HOME COMPUTER

4.44.5. Examples

100 IMAGE Sttt #itt
110 PRINT USING 100:A

IMAGE $#### .### allows printing of any number from -999.999 to 9999.999. The following
illustrate how some sample values would be printed or displayed:

VALUE APPEARANCE
-999.999 $-999.999

-34.5 $ -34.500

0 $ 0.000

12.4565 $ 12.457
6312.991 $6312.999

99999999 Gk

100 IMAGE ANSWERS ARE ### AND ##.##
110 PRINT USING 100:A,B

Allows printing of two numbers. The first may be from -99 to 999 and the second may be from
-9.99 to 99.99. The following illustrate how some sample values would be printed or displayed:

VALUES APPEARANCE

-99 -9.99 ANSWERS ARE -99 AND -9.99
-7-3.459 ANSWERS ARE -7 AND -3.46
00 ANSWERS ARE O0AND .00
14.8 12.75 ANSWERS ARE 15 AND 12.75
795 852 ANSWERS ARE 795 AND ##*#*#%
-984 64.7 ANSWERS ARE *** AND 64.70

300 IMAGE DEAR ####
310 PRINT USING 300:X$

Allows printing a four-character string. The following illustrates how some sample values would

be printed or displayed:
VALUES APPEARANCE
JOHN DEAR JOHN
TOM DEAR TOM
RALPH DEAR #****

MYARC Extended BASIC Il

4.44.6. Programs

The following program illustrates a use of IMAGE. It reads and prints seven numbers ant their total.

100 CALL CLEAR
110 IMAGE $###t. ##
120 IMAGE " ###Ht ##"
130 DATA 233.45,-147.95,8.4,37.263,-51.299,85.2,464
140 TOTAL=0
150 FOR A=1 TO 7
160 READ AMOUNT
170 TOTAL=TOTAL+AMOUNT
180 IF A=1 THEN PRINT USING 110:AMOUNT ELSE PRINT USING 120:AMOUNT
190 NEXT A
200 PRINT "------- "
210 PRINT USING "$#### ##" TOTAL
RUN
$233.45
-147.95
8.40

37.26

-51.30

85.20

464.00

Lines 110 and 120 set up the images. They are the same except for the dollar sign in line 110. To keep
the blank space where the dollar sign was, the format-string in line 120 is enclosed in quotation marks.

Line 180 prints the values using the IMAGE statements.
Line 210 shows that the format can be put directly in the PRINT USING statement.
The amounts are printed with the decimal points aligned.

The following program shows the effect of using more values in the PRINT USING statement than there
are images in the IMAGE statement.

100 IMAGE ### .## ###.#

110 PRINT USING 100:50.34,50.34,37.26,37.26
RUN

50.34, 50.3

37.26, 37.3

o

TEXAS INSTRUMENTS
HOME COMPUTER

4.45. INIT sub program — Initialize

4.45.1. Format
CALL INIT

4.45.2. Cross Reference

LINK, LOAD

4.45.3. Descri ption

The INIT subprogram initializes the 8K of memory allocated to assembly-language subprogram.

INIT loads the linkage vectors to support assembly-language subroutines.

INIT removes any assembly-language subprogram that were previously loaded into memory.

INIT reserves almost 8K of memory for assembly-language.

If you do not CALL INIT before the first time you use the LOAD subprogram to load an
assembly-language subprogram from an external device into memory, a CALL INIT will automatically

be performed by the computer.

Although it is not necessary to CALL INIT in your program, you may wish to do so to remove previously
loaded subprogram from memory.

4.45.4. Examples

CALL INIT
Allocates 8K bytes of memory space.

MYARC Extended BASIC Il

4.46. INPUT

4.46.1. Format

Keyboard In put

INPUT [input-prompt] variable-list

File Input

INPUT # file-number [[REC record-number |
4.46.2. Cross Reference

ACCEPT, EOF, LINPUT, OPEN, REC, TERMCHAR
4.46.3. Descri ption

The INPUT statement suspends program execution to enable you to enter data from the keyboard.
INPUT can be used to retrieve data from an external device.

The variable-list consists of one or more variables separated by commas. Values are assigned to the
variables in the variable-list in the order they are input. A value assigned to a numeric variable must be
a number; a value assigned to a string variable may be a string or a number.

Variables are assigned values sequentially in the variable-list. A value can be assigned to a variable, and
then that variable can be used as a subscript later in the same variable-list.

\I

TEXAS INSTRUMENTS
HOME COMPUTER

4.46.4. Input from the ke yboard
If you do not specify a file-number, the program pauses to accept input from the keyboard.

If you enter an input-prompt, it appears at the beginning of the input field, followed immediately by the
flashing cursor.

The input-prompt is a string expression; if you use a string constant, you must enclose it in quotation
marks.

If you do not enter an input-prompt, a question mark (?) appears at the beginning of the input field,
followed by a space. The flashing cursor appears in the character position following the space.

The input field begins in the far left column of the bottom row of the screen window defined by the
margins. You can enter up to 157 characters from the keyboard; however, an exceptionally long entry
may not be processed correctly by the computer.

The values entered to the variable-list of one INPUT statement must be separated by commas. You must
enter the same number of values as there are variables in the variable-list.

A string value entered from the keyboard can optionally be enclosed in quotation marks. However, a
string containing a comma, a quotation mark, or leading or trailing spaces must be enclosed in quotation
marks. A quotation mark within a string is represented by two adjacent quotation marks.

You normally press ENTER to complete keyboard input; however, you can also use AID, BACK, BEGIN,
CLEAR, PROC'D, DOWN ARROW, or UP ARROW. You can use the TERMCHAR function to determine
which of these keys was pressed to exit From the previous INPUT, LINPUT, or ACCEPT instruction.

Note that pressing CLEAR during keyboard input normally causes a break in the program. However, if
your program includes an ON BREAK NEXT statement, you can use CLEAR to exit from an input field.

The computer sounds a short tone to signal that it is ready to accept keyboard input.

In High-Resolution Mode, keyboard input has no effect. See Appendix K.

MYARC Extended BASIC Il

4.46.5. Examples

100 INPUT X
Allows the input of a number.

100 INPUT X$,Y
Allows the input of a string and a number.

100 INPUT "ENTER TWO NUMBERS: ":A,B
Displays the prompt ENTER TWO NUMBER&d then allows the entry of two numbers.

100 INPUT A(J),J
First evaluates the subscript of A and then accepts data into that element of the array A. Then
a value is accepted into J.

100 INPUT J,AQJ)
First accepts data into J and then accepts data into the Jth element of the array A.

4.46.6. Program

The following program illustrates a use of INPUT from the keyboard.

100 CALL CLEAR

110 INPUT "ENTER YOUR FIRST NAME: ":FNAME$

120 INPUT "ENTER YOUR LAST NAME: ":LNAME$

130 INPUT "ENTER A THREE DIGIT NUMBER: ":DOLLARS
140 INPUT "ENTER A TWO DIGIT NUMBER: ":CENTS

150 IMAGE OF $###.## AND THAT IF YOU

160 CALL CLEAR

170 PRINT "DEAR ";FNAMES$;",": :

180 PRINT " THIS IS TO REMIND YOU"

190 PRINT "THAT YOU OWE US THE AMOUNT"

200 PRINT USING 150:DOLLARS+CENTS/100

210 PRINT "IF YOU DO NOT PAY US, YOU WILL SOON"
220 PRINT "RECEIVE A LETTER FROM OUR"

230 PRINT "ATTORNEY, ADDRESSED TO"

240 PRINT FNAMES; ;LNAMES; : :

250 PRINT TAB(15);"SINCERELY,": : :TAB(15);"l. DUN YOU": : ::
260 GOTO 260

(Press CLEAR to stop the program.)

Lines 110 through 140 allow the person using the program to enter data, as requested with the
input-prompts.

Lines 170 through 250 construct a letter based on the input. (Be certain to enter the colons exactly as
indicated, because they control line spacing.)

TEXAS INSTRUMENTS
HOME COMPUTER

4.46.7. Input from a File
If you include a file-number, input is accepted from the specified device.

The file-number is a numeric expression whose value specifies the number of the file as assigned in its
OPEN instruction.

If necessary, file-number is rounded to the nearest integer.

If you use the REC option, the record-number is a numeric-expression whose value specifies the number
of the record from which you want to input to the variable-list. The records in a file are numbered
sequentially, starting with zero. The REC option can be used only with a file opened for RELATIVE
access.

If necessary, record-number is rounded to the nearest integer.

You can accept input only from files opened in INPUT or UPDATE mode. DISPLAY files must have fewer
than 161 characters in each record to be used with an INPUT statement; however, an exceptionally long
record may not be processed correctly by the computer.

If there are more variables in the variable-list than there are values in the current record, the computer
proceeds as follows:

L In the case of INTERNAL FIXED records, null strings are assigned to the remaining variables,
causing a program error if any of the remaining variables are numeric.

For other records, the computer reads the next record in the file, and uses its values to complete
the variable-list.

If there are more values in the current record than are necessary to fill the variable-list, the remaining
values are discarded. However, if the variable-list ends with a comma, the computer is placed in an
input-pending condition. The remaining values are assigned to the variables in the variable-list of the
next INPUT statement unless that statement includes the REC option, in which case the remaining
values are discarded.

MYARC Extended BASIC Il

4.46.8. Examples

100 INPUT #1:X$
Puts into X$ the next value available in the file that was opened as #1.

100 INPUT #23:X,A,LL$
Puts into X, A, and LL$ the next three values from the file that was opened as #23 with data in
INTERNAL format.

100 INPUT #11,REC 44:TAX
Puts into TAX the first value of record number 44 of the file that was opened as #11 with
RELATIVE file organization.

100 INPUT #3:A,B,C,
110 INPUT #3:X,Y,Z

Puts into A, B, and C the next three values from the file opened as #3. The comma after C
creates an input-pending condition, and because the INPUT statement in line 110 has no REC
clause, the computer assigns to X, Y, and Z data values beginning where the previous INPUT
statement stopped.

101

TEXAS INSTRUMENTS
HOME COMPUTER

4.46.9. Program

The following program illustrates a use of the INPUT statement. It opens a file on the cassette recorder
and writes 5 records on the file. It then goes back and reads the records and displays them on the screen.

100 OPEN #1:"CS1",SEQUENTIAL,INTERNAL,OUTPUT,FIXED 64
110 FORA=1TO 5

120 PRINT #1:"THIS IS RECORD",A

130 NEXT A

140 CLOSE #1

150 CALL CLEAR

160 OPEN #1:"CS1",SEQUENTIAL,INTERNAL,INPUT,FIXED 64
170 PRINT

180 FOR B=1TO 5

190 INPUT #1:A%,C

200 PRINT A$;C

210 NEXT B

220 CLOSE #1

RUN

THIS IS RECORD 1

THIS IS RECORD 2

THIS IS RECORD 3

THIS IS RECORD 4

THIS IS RECORD 5

REWIND CASSETTE TAPE
THEN PRESS ENTER

PRESS CASSETTE RECORD
THEN PRESS ENTER

PRESS CASSETTE STOP
THEN PRESS ENTER

REWIND CASSETTE TAPE
THEN PRESS ENTER

PRESS CASSETTE PLAY
THEN PRESS ENTER

PRESS CASSETTE STOP
THEN PRESS ENTER

MYARC Extended BASIC Il

4.47. INT function — Inte ger

4.47.1. Format

INT(numeric-expression)

4.47.2. Type

Real

4.47.3. Descri ption

The INT function returns the largest integer not greater than the value of the numeric-expression.

If the value of the numeric-expression is an integer, INT returns the value of the numeric-expression
itself. If the numeric-expression is not an integer, INT returns the largest integer not greater than the
numeric-expression.

4.47.4. Examples

100 PRINT INT(3.4)
Prints 3.

100 X=INT(3.9)
Sets X equal to 3.

100 P=INT(3.9999999999)
Sets P equal to 3.

100 DISPLAY AT(3,7):INT(4.0)
Displays 4 at the third row, seventh column of the current screen window.

100 N=INT(-3.9)
Sets N equal to -4.

100 K=INT(-3.00000001)
Sets K equal to -4.

103

TEXAS INSTRUMENTS
HOME COMPUTER

4.48. JOYST sub program — Jo ystick

4.48.1. Format

CALL JOYST(key-unit , x, y)

4.48.2. Descri ption

The JOYST subprogram enables you to ascertain the position of either of the Joystick Controllers.
The numeric expression key-unit can have a value of 1 or 2, specifying the joystick you are testing.

The position of the specified joystick is returned in the numeric variables x and y as follows:

POSITION X Y

Center 0 0
Up 0 +4
Upper Right +4 +4
Right +4 0
Lower Right +4 -4
Down 0 -4
Lower Left -4 -4
Left -4 0
Upper Left -4 +4

If the specified joystick is not connected to the computer, x and y are both returned as 0.

4.48.3. Example

100 CALL JOYST(1,X,Y)
Returns values in X and Y according to the position of joystick number 1.

4.48.4. Program

The following program illustrates a use of the JOYST subprogram. It creates a sprite and then moves it
around according to the input from a joystick.

100 CALL CLEAR

110 CALL SPRITE(#1,33,5,96,128)
120 CALL JOYST(L,X Y)

130 CALL MOTION(#1,-Y*4,X*4)
140 GOTO 120

(Press CLEAR to stop the program.)

MYARC Extended BASIC Il

4.49. KEY sub program

4.49.1. Format

CALL KEY(key-unit , key, status)

4.49.2. Descri ption

The KEY subprogram enables you to transfer one character from the keyboard directly to a program.
KEY can sometimes replace an INPUT statement, especially for the input of a single character.

The numeric-expression key-unit can have a value from 0 to 5, as explained below.

The character code of the key pressed is returned in the numeric variable key. If no key is pressed, a value
of 0 is returned.

See Appendix B for a list of the available characters.
The keyboard status is returned in the numeric variable status as explained below.

Because the character represented by the key pressed is not displayed on the screen, the information
already on the screen is not disturbed.

4.49.3. Key-Unit O ptions

The value you specify for the key-unit determines what portion of the keyboard is active and how the key
pressed is interpreted.

KEY-UNIT RESULT

0 Console keyboard, in mode previously specified by CALL KEY.
1 Only the left side of the keyboard is active.

2 Only the right side of the keyboard is active.

3,4,5 Specific modes for console keyboard.

105

TEXAS INSTRUMENTS
HOME COMPUTER

4.49.4. Status

The value returned as the status can be interpreted as follows:

-1 means the same key was pressed as was returned the last time KEY was called.
0 means no key was pressed.
+1 means a different key was pressed than was returned the last time KEY was called.

4.49.5. Example

100 CALL KEY(0,K,S)
Returnsin K the ASCII code of any key pressed on the keyboard except SHIFT, CTRL, FCTN, and
CAPS, and in S a value indicating whether a key was pressed.

4.49.6. Program

The following program illustrates a use of the KEY subprogram. It creates a sprite and then enables you
to move it around by using the arrow keys (E, S D, and X) without pressing FCTN. Note that line 130
returns to line 120 if no key has been pressed.

To stop the sprite's movement, press any key (except the arrow keys) on the left side of the keyboard.

100 CALL CLEAR

110 CALL SPRITE(#1,33,5,96,128)
120 CALL KEY(1,K,S)

130 IF S=0 THEN 120

140 IF K=5 THEN Y=-4

150 IF K=0 THEN Y=4

160 IF K=2 THEN Y=-4

170 IF K=3 THEN X=4

180 IF K=1 THEN X,Y=0
190 IF K>5 THEN X,Y=0
200 CALL MOTION(#1,Y,X)
210 GOTO 120

(Press CLEAR to stop the program.)

MYARC Extended BASIC Il

4.50. LEN function — Len gth

4.50.1. Format

LEN(string-expression)

4.50.2. Type

DEFINT

4.50.3. Descri ption

The LEN function returns the number of characters in the string specified by the string-expression.
If the string-expression is a null string, LEN returns a zero.

Remember that a space is a valid character and is considered to be part of the length of a string.

4.50.4. Examples

100 PRINT LEN("ABCDE")
Prints 5.

100 X=LEN("THIS IS A SENTENCE.")
Sets X equal to 19.

100 DISPLAY LEN(™)
Displays 0.

100 DISPLAY LEN("")
Displays 1.

100 A$="DAVID"
110 DISPLAY LEN(A$)

Displays 5 when A$ equals DAVID.

107

TEXAS INSTRUMENTS
HOME COMPUTER

451. LET

4.51.1. Format

[LET] variable-list =expression

4.,51.2. Descri ption

The LET instruction, often called the "assignment" instruction, enables you to assign values to variables.
You can use LET as either a program statement or a command.

The variable-list consists of one or more variables separated by commas. Do not mix numeric and string
variables in the same variable-list. However, you can include both DEFINT and REAL numeric variables
in the same variable-list.

The value of expression is assigned to all variables in the variable-list. If the variable-list contains
numeric variables, the expression must be a numeric expression. If the variable-list contains string
variables, the expression must be a string expression.

The word LET can be optionally omitted from instruction.

4.51.3. Examples

100 T=4
Assigns to T the value 4.

100 X,Y,zZ=12.4
Assigns to X, Y, and Z the value 12.4.

100 A=3<5
Assigns -1 to A because it is true that 1 is less than 5.

100 B=12<7
Assigns 0 to B because it is not true that 12 is less than 7.

100 L$,D$,B$="B"
Assigns to L$, D$, and B$ the string constant "B".

MYARC Extended BASIC Il

4.51.4. Program

The following program illustrates a use of LET.

100 K=1

110 K,A(K)=3

120 PRINT K;A(1)
130 PRINT A(3);A(K)
RUN

33

00

In line 100, the variable K is assigned the value 1.

In line 110, the variable K and the array element A(K) are assigned the value of 3. Note that when line
1101is executed, the subscript K is not assigned a new value, but has the same value it had before the line
was executed. Therefore, A(K) is an expression equivalent to A(1), referring to the same element of the
array.

In line 120, the values of K and A(1) are printed.
When line 130 is executed, K has a value of 3; therefore, A(K) is now an expression equivalent to A(3).

Both expressions have a value of 0 (the default value) because no value has been assigned to this element
of array.

109

TEXAS INSTRUMENTS
HOME COMPUTER

4.52. LINK sub program

4.52.1. Format

CALL LINK(subprogram-name [, parameter-list)
4.52.2. Cross Reference

INIT, LOAD, SUB

4.52.3. Descri ption

The LINK subprogram enables you to transfer control from a MYARC Extended BASIC II program to
an assembly-language subprogram.

The subprogram-name is an entry point in an assembly-language subprogram that you have previously
loaded into memory with the LOAD subprogram. The subprogram-name is a string expression; if you use
a string constant, it must be enclosed in quotation marks.

The optional parameter-list consists of one or more parameters, separated by commas, that are to be
passed to the assembly-language subprogram. The contents of the parameter-list depend on the particular
subprogram you are accessing.

The rules for passing parameters to an assembly-language subprogram are the same as the rules for
passing parameters to a MYARC Extended BASIC II subprogram (see SUB).

4.52.4, Example

100 CALL LINK("START",1,3)
Links the MYARC Extended BASIC II program to the assembly-language subprogram START,
and passes the values 1 and 3 to it.

MYARC Extended BASIC Il

4.53. LINPUT — Line In put

4.53.1. Format

Keyboard In put

LINPUT [input-prompt] string-variable

File Input

LINPUT # file-number [,REC record-number . string-variable
4.53.2. Cross Reference

ACCEPT, EOF, INPUT, OPEN, TERMCHAR

4.,53.3. Descri ption

The LINPUT statement suspends program execution to enable you to enter a line of unedited data from
the keyboard. LINPUT can be used also to retrieve an unedited record from an external device.

LINPUT assigns an entire line, a file record, or the remaining portion of a file record (if there is an
input-pending condition) to the string-variable.

See INPUT for an explanation of keyboard- and file-input, and input options.

No editing is performed on the input data. All characters (including commas, quotation marks, colons,
semicolons, and leading and trailing spaces) are assigned to the string-variable as they are encountered.

The maximum value that can be input from the keyboard is 255 characters.

LINPUT is frequently used instead of INPUT when the input data may include a comma. (A comma is
not accepted as input by the INPUT statement, except as part of a string enclosed in quotation marks.)

To use LINPUT for file input the file must be in DISPLAY format.

You normally press ENTER to complete keyboard input; however, you can also use AID, BACK, BEGIN,
CLEAR, PROC'D, DOWN ARROW, or UP ARROW. You can use the TERMCHAR function to determine
which of these keys was pressed to exit from the previous ACCEPT, INPUT, or LINPUT instruction.

Note that pressing CLEAR during keyboard input normally causes a break in the program. However, if
your program includes an ON BREAK NEXT statement, you can use CLEAR to exit from an input field,

111

TEXAS INSTRUMENTS
HOME COMPUTER

4.53.4. Examples

100 LINPUT L$
Assigns to L$ anything typed before ENTER is pressed.

100 LINPUT "NAME: "NM$
Displays NAME: and assigns to NM$ anything typed before ENTER is pressed.

100 LINPUT #1,REC M:L$(M)
Assigns to L$(M) the value that was in record M of the file that was opened as #1 with
RELATIVE DISPLAY file organization.

4.53.5. Program

The following program illustrates the use of LINPUT. It reads a previously existing file and displays only
the lines that contain the word "THE".

100 OPEN #1:"DSK1.TEXT1",INPUT,FIXED 80,DISPLAY
110 IF EOF(1) THEN CLOSE #1 :: STOP

120 LINPUT #1:A$

130 X=POS(A$,"THE",1)

140 IF X>0 THEN PRINT A$

150 GOTO 110

MYARC Extended BASIC Il

454, LIST
4.54.1. Format

List to the screen

LIST[line-number-range]

List to a File (or Device)

LIST" file-specification "[: line-number-range]
4.54.2. Descri ption

The LIST command displays the program (or a portion of it) currently in memory. You can also use LIST
to output the program listing to an external device.

The optional line-number-range specifies the portion of the program to be listed. If you do not enter a
line-number-range, the entire program is listed. The program lines are always listed in ascending order.

If you enter a file-specification, the program listing is output to the specified file or device. The
file-specification, a string constant, must be enclosed in quotation marks. For more information see "File
Specifications".

The program listing is output as a SEQUENTIAL file in DISPLAY format with VARIABLE records (see
OPEN); the file-specification option can be used only with devices that accept these options. For more
information about listing a program on a particular device, refer to the owner's manual that comes with
that device. If you do not enter a file-specification, the program listing is displayed on the screen.

You can stop the listing at any time by pressing CLEAR (FCTN 4). Pressing any other key (except SHIFT,
FCTN, or CTRL) causes the listing to pause until you press a key again.

The LIST command only works with peripherals that support DISPLAY/VARIABLE type records.

113

TEXAS INSTRUMENTS
HOME COMPUTER

4.54.3. The Line-Number-Ran ge

A line-number-range can-consist of a single line number, a single line number followed by a hyphen, a
single line number preceded by a hyphen, or a range of line numbers.

COMMAND LINES LISTED

LIST All lines

LIST X Line number X only

LIST X- Lines from number X to the highest line number, inclusive
LIST -X Lines from the lowest line number to line number X, inclusive
LIST X-Y

or LISTXY All lines from line number X to line number Y. inclusive

If the line-number-range does not include a line number in your program, the following conventions
apply:

L] If line-number-range is higher than any line number in the program, the highest-numbered
program line is listed.

L] If line-number-range is lower than any line number in the program, the lowest-numbered
program line is listed.
L] If line-number-range is between lines in the program, the next higher numbered program line

is listed.

4.54.4. Examples

LIST
Lists the entire program in memory on the display screen.

LIST 100
Lists line 100

LIST 100-
Lists line 100 and all after it.

LIST -200
Lists all lines up to and including line 200.

LIST 100-200
Lists all lines from 100 through 200.

MYARC Extended BASIC Il

4.55. LOAD sub program

4.55.1. Format

File Only

CALL LOAD(file-specification-list)
Data Only

CALL LOAD(address , byte-list [['"", address , byte-list [---ID

File and Data

CALL LOAD(file-specification-list , address , byte-list [,--])
CALL LOAD(address , byte-list , file-specification-list [,--])

4.55.2. Cross Reference

INIT, LINK, PEEK, PEEKV, POKEV, VALHEX

4.55.3. Descri ption

The LOAD subprogram enables you to load assembly-language subprograms into memory. You can also
use LOAD to assign values directly to specified CPU (Central Processing Unit) memory addresses. You
can use the POKEV subprogram to assign values to VDP (Video Display Processor) memory.

To load an assembly-language subprogram, specify a file-specification-list; to assign values to CPU
memory, specify an address and a byte-list (an address must always be followed by a byte-list).

You must enter at least one parameter. The first parameter you specify can be either a
file-specification-list or an address.

If you wish to follow an address and byte-list with another address and byte-list, enter a
file-specification-list or a null string (two adjacent quotation marks) as a separator.

The optional file-specification-list consists of one or more file-specifications separated by commas. A
file-specification is a string expression; if you use a string constant, you must enclose it in quotation
marks.

115

TEXAS INSTRUMENTS
HOME COMPUTER

Each file-specification names an assembly-language object (program) file to be loaded into memory. The
specified file can include subprogram names, so that the subprogram can be executed by the LINK
subprogram.

The object file to be loaded must be in DISPLAY format with FIXED records (see OPEN). For more
information about the file options available with a particular device, refer to the owner's manual that
comes with that device.

You can optionally load bytes of data to a specified CPU memory address. The address specifies the first
address where the data is to be loaded; if the byte-list specifies more than one byte of data, the bytes are
assigned to sequential memory addresses starting with the address you specify.

The numeric expression address must have a value from -32768 to 32767 inclusive.

You can specify an address from 0 to 32767 inclusive by specifying the actual address.

You can specify an address from 32768 to 65535 inclusive by subtracting 65536 from the actual address.
This will result in a value from -32768 to -1 inclusive.

If you know the hexadecimal value of the address, you can use the VALHEX function to convert it to a
decimal numeric expression, eliminating the possible need for calculations.

If necessary, the address is rounded to the nearest integer.

The byte-list consists of one or more bytes of data, separated by commas, that are to be loaded into CPU
memory starting with the specified address.

Each byte in the byte-list must be a numeric expression with a value from 0 to 32767. If the value of a
byte is greater than 255, it is repeatedly reduced by 256 until it is less than 256. If necessary, a byte is
rounded to the nearest integer.

Note that you must use the INIT subprogram to reserve memory space before you use LOAD to load a
subprogram.

Ifyou call the LOAD subprogram with invalid parameters or load an object file with absolute (rather than
relocatable) addresses, the computer may function erratically or cease to function entirely. If this occurs,
turn off the computer, wait several seconds, then turn the computer back on again.

MYARC Extended BASIC Il

4.55.4. The Loader

LOAD uses a "relocatable linking" loader.

Because it is "relocatable", you cannot use LOAD to specify a memory address at which you want to load
a file. However, the file you are loading may specify an absolute load address if it includes an AORG

directive.

Because it is "linking", the object files specified in the file-specification-list can reference each other.

117

TEXAS INSTRUMENTS
HOME COMPUTER

4.56. LOCATE sub program

4.56.1. Format

CALL LOCATE(# sprite-number |, pixel-row |, pixel-column [,...])

4.56.2. Cross Reference

DELSPRITE, SPRITE

4.56.3. Descri ption

The LOCATE subprogram enables you to change the location of one or more sprites.

The sprite-number is a numeric expression whose value specifies the number of a sprite as assigned by
the SPRITE subprogram.

The pixel-row and pixel-column are numeric expressions whose values specify the screen pixel location
of the pixel at the upper-left corner of the sprite.

LOCATE can cause a sprite that has been deleted with DELSPRITE sprite-number to reappear.
4.56.4. Program

The following program illustrates the use of the LOCATE subprogram.
100 CALL CLEAR

110 CALL SPRITE(#1,33,7,1,1,25,25)

120 YLOC=INT(RND*150+1)

130 XLOC=INT(RND*200+1)

140 FOR DELAY=1 TO 300:: NEXT DELAY

150 CALL LOCATE(#1,YLOC,XLOC)
160 GOTO 120

(Press CLEAR to stop the program.)

Line 110 creates a sprite as a fairly quickly moving red exclamation point.
Line 140 locates the sprite at a location randomly chosen in lines 120 and 130.
Line 150 repeats the process.

Also see the third example of the SPRITE subprogram.

MYARC Extended BASIC Il

4.57. LOG function — Natural Lo garithm

4.57.1. Format

LOG(numeric-expression)

4.57.2. Type

REAL

4.57.3. Cross Reference
EXP

4.57.4. Descri ption

The LOG function returns the natural logarithm of the value of the numeric-expression. LOG is the
inverse of the EXP function.

The value of the numeric-expression must be greater than zero.

4.57.5. Examples

100 PRINT LOG(3.4)
Prints the natural logarithm of 3.4, which is 1.223775432.

100 X=LOG(EXP(7.2))
Sets X equal to the natural logarithm of e raised to the 7.2 power, which is 7.2.

100 S=LOG(SQR(T))
Sets S equal to the natural logarithm of the square root of the value of T.

4.57.6. Program

The following program returns the logarithm of any positive number in any base.

100 CALL CLEAR

110 INPUT "BASE: ":B

120 IF B=1 THEN 110

130 INPUT "NUMBER: ":N

140 IF N=0 THEN 130

150 LG=LOG(N)/LOG(B)

160 PRINT "LOG BASE";B;"OF";N;"IS";.LG
170 PRINT

180 GOTO 110

(Press CLEAR to stop the program.)

119

TEXAS INSTRUMENTS
HOME COMPUTER

4.58. MAGNIFY sub program

4.58.1. Format

CALL MAGNIFY(numeric-expression)
4.58.2. Cross Reference

CHAR, SPRITE

4.58.3. Descri ption

The MAGNIFY subprogram enables you to specify whether all sprites are single or double-sized and
whether they are unmagnified or magnified.

The value of the numeric-expression specifies the size and magnification "level" of all sprites. (You cannot
specify the level of an individual sprite.)

LEVEL CHARACTERISTICS

1 Single-sized, unmagnified
2 Single-sized, magnified

3 Double-sized, unmagnified
4 Double-sized, magnified

The screen position of the pixel in the upper-left corner of a sprite is considered to be the position of that
sprite. That pixel remains in the same screen position regardless of changes to the magnification level.

When you enter MYARC Extended BASIC II, sprites are single-sized and unmagnified (level 1). When
your program ends (either normally or because of an error), stops at a breakpoint, or changes graphics
mode, the sprite magnification level is restored to 1.

4.58.4. Single-Sized Sprites

A single-sized sprite is defined only by the character you specify when the sprite is created.

MYARC Extended BASIC Il

4.58.5. Double-Sized S prites

A double-sized sprite is defined by four consecutive characters, including the character that you specify
when the sprite is created.

If the number of the character you specify is a multiple of 4, that character is the first of the four
characters that comprise the sprite's definition. If the character number is not a multiple of 4, the next
lower character that is a multiple of four is the first character of the sprite.

The first of the four characters defines the upper-left quarter of the sprite, the second character defines
the lower-left quarter of the sprite, the third defines the upper-right quarter of the sprite, and the last
of the four characters defines the lower-right quarter of the sprite.

4.58.6. Unmagnified S prites

An unmagnified sprite occupies only the number of characters on the screen specified by the characters
that define it.

A single-sized unmagnified sprite occupies 1 character position on the screen; a double-sized unmagnified
sprite occupies 4 character positions.

4.,58.7. Magnified S prites
A magnified sprite expands to twice the height and twice the width of an unmagnified sprite. The
expansion occurs down and to the right; the pixel in the upper-left corner of the sprite remains in the

same screen position.

A magnified sprite has 4 times the area of an unmagnified sprite. When you magnify a sprite, each pixel
of the unmagnified sprite expands to 4 pixels of the magnified sprite.

A single-sized magnified sprite occupies 4 character positions on the screen; a double-sized magnified
sprite occupies 16 character positions.

121

TEXAS INSTRUMENTS
HOME COMPUTER

4.58.8. Program
The following program illustrates a use of the MAGNIFY subprogram.

A little figure (single-sized, unmagnified) appears near the center of the screen. In a moment, it becomes
twice as big (single-sized, magnified), covering four character positions. In another moment, it is replaced
by the upper-left corner of a larger figure (single-sized, magnified), still covering four character positions.
Then the full figure appears (double-sized, magnified), covering sixteen character positions. Finally it is
reduced in size to four character positions (double-sized, unmagnified).

100 CALL CLEAR

110 CALL CHAR(148,"1898FF3D3C3CE404")
120 CALL SPRITE(#1,148,5,92,124)

130 GOSUB 230

140 CALL MAGNIFY(2)

150 GOSUB 230

160 CALL CHAR(148,"0103C3417F3F07070707077E7C40000080C0C080
FCFEE2E3EOEOE06060606070")

170 GOSUB 230

180 CALL MAGNIFY(4)

190 GOSUB 230

200 CALL MAGNIFY(3)

210 GOSUB 230

220 STOP

230 REM DELAY

240 FOR DELAY=1 TO 500

250 NEXT DELAY

260 RETURN

Line 110 defines character 148.
Line 120 sets up sprite using character 148. By default the magnification factor is 1.
Line 140 changes the magnification factor to 2.

Line 160 redefines character 148. Because the definition is 64 characters long, it also defines characters
149, 150, and 151.

Line 180 changes the magnification factor to 4.

Line 200 changes the magnification factor to 3.

MYARC Extended BASIC Il

4.59. MARGINS sub program

4.59.1. Format

CALL MARGINS(left , right |, top , bottom)
4.59.2. Cross Reference

ACCEPT, CLEAR, DISPLAY, DISPLAY USING, GRAPHICS, INPUT, LINPUT, PRINT, PRINT USING,
WRITE

4.59.3. Descri ption

The MARGINS subprogram enables you to define screen margins. The margins you specify define a
screen window that affects the operation of several instructions.

Left, right, top, and bottom are numeric expressions whose values specify the margins.

The margins cannot "overlap"; that is, the position of the top margin must be higher on the screen than
the bottom margin, and the position of the left margin must be farther left on the screen than the right
margin.

When creating a screen window, you must leave the window large enough to allow entry of a command.

The valid range for margin location varies according to the graphics mode. Acceptable values for the
margins in each mode are as follows:

MODE TOP&BOTTOM LEFT&RIGHT
Pattern 1-24 1-32
Text 1-24 1-40
High-Resolution 1-24 1-32

The upper-left corner of the window defined by the margins is considered to be the intersection of row
1 and column 1 by the ACCEPT, DISPLAY, and DISPLAY USING instructions that use the AT option
and the WRITE instruction.

The lower-left corner of the window is considered to be the beginning of the input line by the ACCEPT,
INPUT, and LINPUT instructions.

The lower-left corner of the window is considered to be the beginning of the print line by the DISPLAY,
DISPLAY USING, PRINT, and PRINT USING instructions.

When the ACCEPT, INPUT, LINPUT, or PRINT USING instructions cause scrolling, scrolling occurs
only in the window.

123

TEXAS INSTRUMENTS
HOME COMPUTER

The CLEAR, GCHAR, HCHAR, and VCHAR subprogram are not affected by the margin settings.
In all Modes, the margins can extend to the edges of the screen.

When you enter MYARC Extended BASIC II, the left margin is set to 3 and the right margin to 30. The
top and bottom margins are set to 1 and 24 respectively. When a program running in High-Resolution
Mode ends, these default margin settings are restored.

4.59.4. Examples

100 CALL MARGINS(3,30,1,24)
Sets all four margins to the default value in Pattern and High-Resolution Modes.

100 CALL MARGINS(1,40,1,24)
Sets the left, right, top and bottom margins to the extreme edges of the screen in Text Mode.

MYARC Extended BASIC Il

4.60. MAX function — Maximum

4.60.1. Format

MAX(numeric-expressionl , humeric-expression2)

4.60.2. Type

Numeric (REAL or DEFINT)

4.60.3. Cross Reference

MIN

4.60.4. Descri ption

The MAX function returns the larger value of two numeric-expressions.

MAX is the opposite of the MIN function.

If the values of the numeric-expressions are equal, MAX returns that value.

4.60.5. Examples

100 PRINT MAX(3,8)
Prints 8.

100 F=MAX(3E12,1800000)
Sets F equal to 3E12.

100 G=MAX(-12,-4)
Sets G equal to -4.

100 A=7::B=-5
110 L=MAX(A,B)
Sets L equal to 7 when A=7 and B=-5.

125

TEXAS INSTRUMENTS
HOME COMPUTER

4.61. MERGE

4.61.1. Format

MERGE]"] file-specification "

4.61.2. Cross Reference

SAVE

4.61.3. Descri ption

The MERGE command combines a program from an external storage device with the program currently
in memory. MERGE is frequently used to combine several previously written program segments into one

program.

The file-specification is a string constant that indicates the name of the program on the external device.
The file-specification can optionally be enclosed in quotation marks.

The lines of the external program are inserted in line-number order among the lines of the program in
memory. If a line number in the external program duplicates a line number in the program in memory,
the new line replaces the old line.

The MERGE command does not clear breakpoints.

A program on an external device can be merged only if it was saved with the MERGE option of the SAVE
command.

4.61.4. Example

MERGE DSK1.SUB
Merges the program SUB into the program currently in memory.

MYARC Extended BASIC Il

4.61.5. Program

Listed below is an example of how to merge programs. If the following program is saved on DSK1 as
BOUNCE with the merge option, it can be merged with other programs.

100 CALL CLEAR

110 RANDOMIZE

140 DEF RND50=INT(RND*50-25)
150 GOSUB 10000

10000 FOR AA=1 TO 100

10010 QQ=RND50

10020 LL=RND50

10030 CALL MOTION(#1,QQ,LL)
10040 NEXT AA

10050 RETURN

SAVE "DSK1.BOUNCE",MERGE
NEW

Place the following program into the computer's memory.

120 CALL CHAR(96,"18183CFFFF3C1818")
130 CALL SPRITE(#1,96,7,92,128)

150 GOSUB 500

160 STOP

Now merge BOUNCE with the above program.

MERGE DSK1.BOUNCE

The program that results from merging BOUNCE with the above program is shown here.

LIST

100 CALL CLEAR

110 RANDOMIZE

120 CALL CHAR(96,"18183CFFFF3C1818")
130 CALL SPRITE(#1,96,7,92,128)
140 DEF RND50=INT(RND. 50-25)
150 GOSUB 10000

160 STOP

10000 FOR AA=1 TO 100

10010 QQ=RND50

10020 LL=RND50

10030 CALL MOTION(#1,QQ,LL)
10040 NEXT AA

10050 RETURN

Note that line 150 is from the program that was merged (BOUNCE), not from the program that was in
memory.

127

TEXAS INSTRUMENTS
HOME COMPUTER

4.62. MIN function — Minimum

4.62.1. Format

MIN(numeric-expressionl , humeric-expression2)
4.62.2. Type

Numeric (REAL or DEFINT)

4.62.3. Cross Reference

MAX

4.62.4. Descri ption

The MIN function returns the smaller value of two numeric-expressions. MIN is the opposite of the MAX
function.

If the values of the numeric-expressions are equal, MIN returns that value.

4.62.5. Examples

100 PRINT MIN(3,8)
Prints 3.

100 F=MIN(3E12,1800000)
Sets F equal to 1800000.

100 G=MIN(-12,-4)
Sets G equal to -12.

100 A=7::B-=5
110 L=MIN(A,B)
Sets L equal to -5 when A=7 and B=-5.

MYARC Extended BASIC Il

4.63. MOTION sub program

4.63.1. Format

CALL MOTION(# sprite-number , vertical-velocity , horizontal-velocity [,---])
4.63.2. Cross Reference

SPRITE

4.63.3. Descri ption

The MOTION subprogram enables you to change the velocity of one or more sprites.

The sprite-number is a numeric expression whose value specifies the number of a sprite as assigned by
the SPRITE subprogram.

Thevertical-velocity and horizontal-velocity are numeric expressions whose values range from -128 to 127.
If both values are zero, the sprite is stationary. The speed of a sprite is in direct linear proportion to the
absolute value of the specified velocity.

A positive vertical-velocity causes the sprite to move toward the bottom of the screen; a negative
vertical-velocity causes the sprite to move toward the top of the screen.

A positive horizontal-velocity causes the sprite to move to the right; a negative horizontal-velocity causes
the sprite to move to the left.

If neither the vertical-velocity nor horizontal-velocity are zero, the sprite moves at an angle in a direction
and at a speed determined by the velocity values.

When a moving sprite reaches an edge of the screen, it disappears. The sprite reappears in the
corresponding position at the opposite edge of the screen.

129

TEXAS INSTRUMENTS
HOME COMPUTER

4.63.4. Program

The following program illustrates a use of the MOTION subprogram.

100 CALL CLEAR

110 CALL SPRITE(#1,33,5,92,124)
120 FOR XVEL=-16 TO 16 STEP 2
130 FOR YVEL=-16 TO 16 STEP 2
140 DISPLAY AT(12,11):XVEL;YVEL
150 CALL MOTION(#1,YVEL,XVEL)
160 NEXT YVEL

170 NEXT XVEL

Line 110 creates a sprite.

Lines 120 and 130 set values for the motion of the sprite.

Line 140 displays the current values of the motion of the sprite.
Line 150 sets the sprite in motion.

Lines 160 and 170 complete the loops that set the values for the motion of the sprite.

MYARC Extended BASIC Il

4.64. NEW

4.64.1. Format

NEW

4.64.2. Descri ption

The NEW command erases the program currently in memory, so that you can enter a new program.

The NEW command restores the computer to the condition it was in when you selected MYARC Extended
BASIC IT from the main selection list, with the following exceptions:

L Memory allocated by the INIT subprogram is not returned to the memory area available to
MYARC Extended BASIC II.
L] Assembly-language subprogram loaded by the LOAD subprogram remain in memory.

NEW restores all other default values, closes any open files, erases all variable values and names, and
cancels any BREAK or TRACE commands in effect.

131

TEXAS INSTRUMENTS
HOME COMPUTER

4.65. NEXT

4.65.1. Format

NEXT control-variable

4.65.2. Cross Reference

FOR TO

4.65.3. Descri ption

The NEXT instruction marks the end of a FOR-NEXT loop.

You can use NEXT as either a program statement or a command.

The control-variable is the same control-variable that appears in the corresponding FOR TO instruction.

The NEXT instruction is always paired with a FOR TO instruction to form a FOR-NEXT loop (see FOR
TO).

A NEXT statement cannot be part of an IF THEN statement.

IF NEXT is used as a command, it must be part of a multiple-statement line. A FOR TO instruction must
precede it on the same line.

4.65.4. Program

The following program illustrates a use of the NEXT statement in lines 130 and 140.

100 TOTAL=0

110 FOR COUNT=10 TO O STEP -2

120 TOTAL=TOTAL+COUNT

130 NEXT COUNT

140 FOR DELAY=1 TO 100::NEXT DELAY
150 PRINT TOTAL,COUNT;DELAY

RUN

30 -2101

MYARC Extended BASIC Il

4.66. NUMBER

4.66.1. Format

NUMBER [initial-line-number I, increment |
NUM

4.66.2. Descri ption

The NUMBER command puts the computer in Number Mode, so that it automatically generates line
numbers for your program.

If you enter an initial-line-number, the first line number displayed is the one you specify. If you do not
specify an initial-line-number, the computer starts with line number 100.

Succeeding line numbers are generated by adding the value of the numeric expression increment to the
previous line number. To specify increment only (without specifying an initial-line-number), you must
precede the increment with a comma. The default increment is 10.

If a line number generated by the NUMBER command is the number of a line already in the program
in memory, the existing program line is displayed with the line number. To indicate that the displayed
line is an existing program line, the prompt symbol (>) that normally appears to the left of the line
number is not displayed. When the computer displays an existing program line, you can either edit the
line or press ENTER to leave the line unchanged.

If you enter a program line that contains an error, the appropriate error message is displayed, and the
same line number appears again, enabling you to retype the line correctly.

If the next line number to be generated is greater than 32767, the computer leaves Number Mode.
To leave Number Mode, press CLEAR (FCTN 4). If the computer is displaying only a line number (that

is, a line number not followed by any characters), you can leave Number Mode by pressing ENTER, UP
ARROW, DOWN ARROW, PROC'D, BEGIN, AID, or BACK.

133

TEXAS INSTRUMENTS
HOME COMPUTER

4.66.3. Special Editin g Keys in Number Mode

In Number Mode, you can use the editing keys whether you are changing existing program lines or
entering new ones.

LEFT ARROW (FCTN S) — Pressing LEFT ARROW moves the cursor one character position to the left.
When the cursor moves over a character, it does not change or delete it.

RIGHT ARROW (FCTN D) — Pressing RIGHT ARROW moves the cursor one character position to the
right. When the cursor moves over a character, it does not change or delete it.

INS (FCTN 2) — Pressing INS enables you to insert characters at the cursor position. Characters that you
type are inserted until you press one of the other special editing keys. The character at the cursor position
and all characters to the right of the cursor move to the right as you type. You may lose characters if they
move so far to the right that they are no longer in the program line.

DEL (FCTN 1) — Pressing DEL deletes the character in the cursor position. All characters to the right
of the cursor move to the left.

ERASE (FCTN 3) — Pressing ERASE erases the program line currently displayed (including the line
number). The program line is erected only from the screen, not from memory.

REDO (FCTN 8) — Pressing REDO causes the program line or other text moat recently input to be
displayed. This line can be especially helpful if you make an error while editing a program line, causing
the computer not to accept it. Pressing REDO displays the original line so that you can make corrections
without having to retype the entire line. When you press REDO, the computer leaves Number Mode and
enters Edit Mode.

CLEAR (FCTN 4) — Pressing CLEAR causes the computer to leave Number Mode. If you were entering
a new program line, it is not accepted. If you were changing an existing program line, any changes that
you mate are ignored.

ENTER —Ifyou press ENTER when the computer is displaying only a line number (that is, a line number
not followed by any characters), the computer leaves Number Mode. If the line number is the number
of an existing program line, that program line is not changed or deleted.

If you press ENTER when the computer is displaying a line number followed by a program line, that line
is accepted and the next line number is generated. The displayed line may be a new line that you have
entered, an existing program line that you have not changed, or an existing program line that you have
edited.

UP ARROW (FCTN E) — UP ARROW works exactly the same as ENTER in Number Mode.

DOWN ARROW (FCTN X) — DOWN ARROW works exactly the same as ENTER in Number Mode.

MYARC Extended BASIC Il

4.66.4. Example

In the following, what you type is UNDERLINED. Press ENTER after each line. NUM instructs the
computer to number starting at 100 with increments of 10.

NUM
100 X=4

110 =10
120

NUM 110

110 z=11

120 PRINT (Y+X)/Z
130

NUM 105,5

105 Y=7_

110 Z=11

115

LIST

100 X=4

105 Y=7

110 z=11

120 PRINT (X+Y)/Z

NUM 110 instructs the computer to number starting at 110 with increments of 10. Change line 110 to
Z=11.

NUM 105,5 instructs the computer to number starting at line 105 with increments of 5. Line 110 already
exists.

135

TEXAS INSTRUMENTS
HOME COMPUTER

4.67. OLD

4.67.1. Format

OLD [] file-specification "

4.67.2. Cross Reference

SAVE

4.67.3. Descri ption

The OLD command loads a program from an external storage device into memory.

The file-specification indicates the name of the program to be loaded from the external device. The
file-specification, a string constant, can optionally be enclosed in quotation marks.

The program to be loaded can be one of the following:

L] A saved MYARC Extended BASIC II program.

A file in DISPLAY/VARIABLE 80 format, created by the LIST command or a text editing or word
processing program.

A specially prepared assembly-language program that execute a automatically when it is loaded.

Before the program is loaded, all open files are closed. The program currently in memory is erased after
the program begins to load. For more information see "Loading an Existing Program".

4.67.4. Protected and Un protected Pro grams

To execute an unprotected MYARC Extended BASIC II program that has been loaded into memory, enter
the RUN command when the cursor appears. You can use the LIST command to display the program or
any portion of the program.

If the program was saved using the PROTECTED option of the SAVE command, it starts executing
automatically when it is loaded. When the program ends (either normally or because an error) or stops
at a breakpoint, it is erased from memory.

MYARC Extended BASIC Il

4.67.5. Examples

OLD Cs1

Displays instructions and then loads into the computer's memory a program from a cassette
recorder.

OLD "DSK1.MYPROG"
Loads into the computer's memory the program MYPROG from diskette in disk drive one.

OLD DSK.DISK3.UPDATES85
Loads into the computer's memory the program UPDATES5 from the diskette named DISKS3.

137

TEXAS INSTRUMENTS
HOME COMPUTER

4.68. ON BREAK

4.68.1. Format

ON BREAK STOP
ON BREAK NEXT

4.68.2. Cross Reference
BREAK
4.68.3. Descri ption

The ON BREAK statement enables you to specify the action you want the computer to take when either
a breakpoint is encountered or CLEAR (FCTN 4) is pressed.

If you enter the STOP option, or if your program does not include an ON BREAK statement, program
execution stops when a breakpoint is encountered or CLEAR is pressed.

If you enter the NEXT option, program execution continues normally (with the next program statement)
when a breakpoint is encountered or CLEAR is pressed. If you press CLEAR while the computer is
performing an input or an output operation with certain external devices, an error condition occurs,
causing the program to halt. When the NEXT option is in effect, pressing QUIT (FCTN =) is the only way
to interrupt your program. However, pressing QUIT erases the program in memory and causes you to exit
from MYARC Extended BASIC IT without closing any open files, possibly causing the loss of data in those
files.

ON BREAK does not affect a breakpoint that occurs when a BREAK statement with no line-number-list
is encountered in a program.

MYARC Extended BASIC Il

4.68.4. Program

The following program illustrates the use of ON BREAK.

100 CALL CLEAR

110 BREAK 150

120 ON BREAK NEXT

130 BREAK

140 FOR A=1TO 50

150 PRINT "CLEAR IS DISABLED."
160 NEXT A

170 ON BREAK STOP

180 FOR A=1TO 50

190 PRINT "NOW IT WORKS."
200 NEXT A

Line 110 sets a breakpoint at line 150.
Line 120 sets breakpoint handling to go to the next line.

A breakpoint occurs at line 130 despite line 120, because no line number has been specified after BREAK.
Enter CONTINUE.

No breakpoint occurs at line 150 because of line 120; CLEAR has no effect during the execution of lines
140 through 160 because of line 120. Line 170 restores the normal use of CLEAR.

139

TEXAS INSTRUMENTS
HOME COMPUTER

4.69. ON ERROR

4.69.1. Format

ON ERROR STOP
ON ERROR/ine-number

4.69.2. Cross Reference
ERR, GOSUB, RETURN
4.69.3. Descri ption

The ON ERROR statement enables you to specify the action you want the computer to take if a program
error occurs.

If you enter the STOP option, or if your program does not include an ON ERROR statement, program
execution stops when a program error occurs.

If you enter a line-number, a program error causes program control to be transferred to the subroutine
that begins at the specified line-number. A RETURN statement in the subroutine returns control to a
specified program statement.

When an error transfers control to a subroutine, the line-number option is canceled. If you wish to restore
it, your program must execute an ON ERROR line-number statement again.

The ON ERROR line-number statement does not transfer control when the error is caused by a RUN
statement.

MYARC Extended BASIC Il

4.69.4. Program

The following program illustrates the use of ON ERROR.

100 CALL CLEAR

110 DATA "A","4" "B","C"

120 ON ERROR 190

130 FOR G=1TO 4

140 READ X$

150 X=VAL(X$)

160 PRINT X;"SQUARED IS";X*X

170 NEXT G

180 STOP

190 REM ERROR SUBROUTINE

200 ON ERROR 230

210 X$="5"

220 RETURN

230 REM SECOND ERROR

240 CALL ERR(CODE, TYPE,SEVER,LINE)
250 PRINT "ERROR";CODE;" IN LINE";LINE
260 RETURN 170

Line 120 causes any error to pass control to line 190.
Line 130 begins a loop. An error occurs in line 150 and control passes to line 190.
Line 200 causes the next error to pass control to line 230.

Line 210 changes the value of X$ to an acceptable value. Line 220 returns control to the line in which the
error occurred (line 150).

The second time an error occurs, the SECOND ERROR subroutine is called because of line 200. Line 240
obtains specific information about the error by using CALL ERR. Line 250 reports the nature of the
error, and line 260 returns control to line 170 of the main program, which begins the next Iteration of
the loop.

When the third error occurs, the message BAD ARGUMENT IN 150 is displayed because the program does
not specify what action to take if another error occurs. Program execution ceases.

141

TEXAS INSTRUMENTS
HOME COMPUTER

4.70. ON GOSUB

4.70.1. Format

ON numeric-expression GOSUBIline-number-list
GOSsuB

4.70.2. Cross Reference
GOSUB, RETURN
4.70.3. Descri ption

The ON GOSUB statement enables you to transfer conditional program control to one of several
subroutines.

The value of the numeric-expression determines to which of the line numbers in the line-number-list
program control is transferred.

If the value of the numeric-expression is 1, program control is transferred to the subroutine that begins
at the program statement specified by the first line number in the line-number-list; if the value of the
numeric-expression is 2, program control is transferred to the subroutine that begins at the program
statement specified by the second line number in the line-number-list; and so on.

If necessary, the value of the numeric-expression is rounded to the nearest integer. The value of the
numeric-expression must be greater than or equal to 1 and less than or equal to the number of line
numbers in the line-number-list.

The line-number-list consists of one or more line numbers separated by commas. Each line number
specifies a program statement at which a subroutine begins.

Use a RETURN statement to return program control to the statement immediately following the ON
GOSUB statement that called the subroutine.

To avoid unexpected results, it is recommended that you exercise special care if you use ON GOSUB to
transfer control to or from a subprogram or into a FOR-NEXT loop.

4.70.4. Examples

100 ON X GOSUB 1000,2000,300
Transfers control to 1000 if X is 1, 2000 if X is 2, and 300 if X is 3.

100 ON P-4 GOSUB 200,250,300,800,170
Transfers control to 200 if P-4 is 1 (P is 5), 250 if P-4 is 2, 300 if P-4 is 3, 800 if P-4 is 4, and 170
if P-4 is 5.

MYARC Extended BASIC Il

4.70.5. Program

The following program illustrates a use of ON GOSUB.

100 CALL CLEAR

110 DISPLAY AT(11,1):"CHOOSE ONE OF THE FOLLOWING:"

120 DISPLAY AT(13,1):"1 ADD TWO NUMBERS."

130 DISPLAY AT(14,1):"2 MULTIPLY TWO NUMBERS."

140 DISPLAY AT(15,1):"3 SUBTRACT TWO NUMBERS."

150 DISPLAY AT(16,1):"4 EXIT PROGRAM."

160 DISPLAY AT(20,1):"YOUR CHOICE:"

170 DISPLAY AT(22,2):"FIRST NUMBER."

180 DISPLAY AT(23,1):"SECOND NUMBER."

190 CALL MARGINS(3,30,1,24)

200 ACCEPT AT(20,14)VALIDATE(DIGIT):CHOICE

210 IF CHOICE<1 OR CHOICE>4 THEN 200

220 IF CHOICE=4 THEN STOP

230 ACCEPT AT(22,16)VALIDATE(NUMERIC):FIRST

240 ACCEPT AT(23,16)VALIDATE(NUMERIC):SECOND

250 CALL MARGINS(3,30,1,8)

260 ON CHOICE GOSUB 280,300,320

270 GOTO 190

280 DISPLAY AT(3,1)ERASE ALL:FIRST;"PLUS";SECOND;"EQUALS";FIRST+SECOND
290 RETURN

300 DISPLAY AT(3,1)ERASE ALL:FIRST;"TIMES";SECOND;"EQUALS";FIRST*SECOND
310 RETURN

320 DISPLAY AT(3,1)ERASE ALL:FIRST;"MINUS";SECOND;"EQUALS";FIRST-SECOND
330 RETURN

Line 260 determines where to go according to the value of CHOICE.

143

TEXAS INSTRUMENTS
HOME COMPUTER

4.71. ON GOTO

4.71.1. Format

ON numeric-expression GOTOline-number-list
GOTO

4.71.2. Cross Reference

GOTO
4.71.3. Descri ption

The ON GOTO statement enables you to transfer unconditional program control to one of several
program statements.

The value of the numeric-expression determines to which of the line numbers in the line-number-list
program control is transferred. If the value of the numeric-expression is 1, program control is transferred
to the program statement specified by the first line number in the line-number-list; if the value of the
numeric-expression is 2, program control is transferred to the program statement specified by the second
line number in the line-number-list; and so on.

If necessary, the value of the numeric-expression is rounded to the nearest integer. The value of the
numeric-expression. must be greater than or equal to 1 and less than or equal to the number of line
numbers in the line-number-list.

The line-number-list consists of one or more line numbers separated by commas. Each line number
specifies a program statement.

To avoid unexpected results, it is recommended that you exercise care if you use ON GOTO to transfer
control to or from a subroutine or a subprogram or into a FOR-NEXT loop.

4.71.4. Examples

100 ON X GOTO 1000,2000,300
Transfers control to 1000 if X is 1, 2000 if X is 2, and 300 if X is 3. The equivalent statement
using an IF-THEN-ELSE statement is [F X=1 THEN 1000 ELSE IF X=2 THEN 2000 ELSE IF
X=3 THEN 300 ELSE PRINT "ERROR!"::STOP.

100 ON P-4 GOTO 200,250,300,800,170
Transfers control to 200 if P-4 is 1 (P is 5), 250 if P-4 is 2, 300 if P-4 is 3, 800 if P-4 is 4, and 170
is P-4is 5.

MYARC Extended BASIC Il

4.71.5. Program

The following program illustrates a use of ON GOTO. Line 260 determines where to go according to the
value of CHOICE.

100 CALL CLEAR

110 DISPLAY AT(11,1):"CHOOSE ONE OF THE FOLLOWING:"

120 DISPLAY AT(13,1):"1 ADD TWO NUMBERS."

130 DISPLAY AT(14,1):"2 MULTIPLY TWO NUMBERS."

140 DISPLAY AT(15,1):"3 SUBTRACT TWO NUMBERS."

150 DISPLAY AT(16,1):"4 EXIT PROGRAM."

160 DISPLAY AT(20,1):"YOUR CHOICE:"

170 DISPLAY AT(22,2):"FIRST NUMBER:"

180 DISPLAY AT(23,1):"SECOND NUMBER:"

190 CALL MARGINS(3,30,1,24)

200 ACCEPT AT(20,14)VALIDATE(DIGIT):CHOICE

210 IF CHOICE<1 OR CHOICE>4 THEN 200

220 IF CHOICE=4 THEN STOP

230 ACCEPT AT(22,16)VALIDATE(NUMERIC):FIRST

240 ACCEPT AT(23,16)VALIDATE(NUMERIC):SECOND

250 CALL MARGINS(3,30,1,8)

260 ON CHOICE GOTO 270,290,310

270 DISPLAY AT(3,1)ERASE ALL:FIRST;"PLUS";SECOND;"EQUALS";FIRST+SECOND
280 GOTO 190

290 DISPLAY AT(3,1)ERASE ALL:FIRST;"TIMES";SECOND;"EQUALS";FIRST*SECOND
300 GOTO 190

310 DISPLAY AT(3,1)ERASE ALL:FIRST;"MINUS";SECOND;"EQUALS";FIRST-SECOND
320 GOTO 190

145

TEXAS INSTRUMENTS
HOME COMPUTER

4.72. ON WARNING

4.72.1. Format
ON WARNING PRINT

STOP
NEXT

4.72.2. Descri ption

The ON WARNING statement enables you to specify the action you want the computer to take if a
warning condition occurs during the execution of your program.

A warning, a condition caused by invalid input or output, does not normally cause program execution to
be terminated.

If you enter the PRINT option, or if your program does not include an ON WARNING statement, the
computer displays a warning message when a warning condition occurs during program execution.

If you enter the STOP option, program execution stops when a warning condition occurs during program
execution.

If you enter the NEXT option, program execution continues normally when a warning condition occurs
and no warning message is displayed. Normally, execution continues beginning with the next program
statement; however, if the cause of the warning is an invalid response to an INPUT statement, program
execution continues beginning with that same INPUT statement.

You may have multiple ON WARNING statements in the same program.

If your program is running in the High-Resolution Mode, no message is displayed. See Appendix K.

MYARC Extended BASIC Il

4.72.3. Program

The following program illustrates the use of ON WARNING.

100 CALL CLEAR

110 ON WARNING NEXT
120 PRINT 120,5/0

130 ON WARNING PRINT
140 PRINT 140,5/0

150 ON WARNING STOP
160 PRINT 160,5/0

170 PRINT 170

RUN

120 9.99999E+**
140

* WARNING

NUMERIC OVERFLOW IN 140
9.99999E +**
160
* WARNING
NUMERIC OVERFLOW IN 160

Line 110 sets warning handling to go to the next line. Line 120 therefore prints the result without any
message.

Line 130 sets warning handling to the default, printing the message and then continuing execution. Line
140 therefore prints 140, then the warning, and then continues.

Line 150 sets warning handling to print the warning message and then stop execution. Line 160 therefore
prints 160 and the warning message and then stops.

147

TEXAS INSTRUMENTS
HOME COMPUTER

4.73. OPEN

4.73.1. Format

OPEN #file-number : file-specification [file-organization [size]]
[, file-type 1, open-model][, record-type [record-length 1]

4.73.2. Cross Reference
CLOSE, INPUT, PRINT
4.73.3. Descri ption

The OPEN instruction establishes an association between the computer and an external device, enabling
you to store, retrieve, and process data.

The file-number is a numeric expression having a value between 1 and 255. The file-number is assigned
to the external file or device indicated by the file-specification, so that input/output processing
instructions may refer to the file by its file-number. While a file is open, its file-number cannot be
assigned to another file. However, you may have more than one file open to a device at one time.
File-number 0 always refers to the keyboard and screen of your computer, and is always open. You cannot
open or close file-number 0.

If necessary, the file-number is rounded to the nearest integer.

The file-specification is a string expression; if you use a string constant, you must enclose it in quotation
marks.

See Appendix K if you are working with files in High-Resolution Mode.

MYARC Extended BASIC Il

4.73.4. Options

The following options may be entered in any order.

FILE-ORGANIZATION

The file-organization specifies whether records are to be accessed sequentially or randomly.
Enter SEQUENTIAL for sequential access, or RELATIVE for random access. Records in a
sequential-access file are read or written in sequence from beginning to end. Records in a
random-access (relative-record) file can be accessed in any order (they can be processed randomly
or sequentially).

If you do not specify a file-organization, it is assumed to be SEQUENTIAL.

SIZE
You can optionally specify the initial size of the file. Size is a numeric expression, the value of
which specifies the initial number of records in the file. Note: The size option cannot be used with
all peripherals.

FILE-TYPE

The file-type specifies the format of data in the file.

INTERNAL — The computer transfers data in binary format. This is the most efficient method
of sending data.

DISPLAY — The computer transfers data in ASCII format. DISPLAY files can only use FIXED
records of 64 or 128. If no file-type is specified in OPEN, the default is DISPLAY.

DISPLAY type files require a special kind of output record. Each element in the PRINT field
must be separated by a comma enclosed in quotation marks. The comma serves as a field
separator in the file. The omission of this comma causes an I/O error. Note: This is not the same
as a print separator, which must be inserted between an element in the PRINT field and the field
separator.

149

TEXAS INSTRUMENTS
HOME COMPUTER

OPEN-MODE
The open-mode specifies the input/output operations that can be performed on the file.

INPUT — The computer can only read data from the file.
OUTPUT — The computer can only write data to the file.
UPDATE — The computer can both read from and write to the file.

APPEND — The computer can only write data and only at the end of the file; records already in
the file cannot be accessed.

If you open an existing file for OUTPUT, the data items you write to the file replace those
currently in the file.

If you do not specify an open-mode, it is assumed to be UPDATE.

RECORD-TYPE
The record-type specifies whether the records in the file are FIXED (all of the same length) or
VARIABLE (of various lengths).

SEQUENTIAL files can have FIXED or VARIABLE records. If you do not specify the record-type
of a SEQUENTIAL file, it is assured to be VARIABLE.

RELATIVE files must have FIXED records. If you do not specify the record-type of a RELATIVE
file, it is assumed to be FIXED.

RECORD-LENGTH
You can optionally specify the length of records in the file. Record-length is a numeric expression,
the value of which specifies the fixed size (for FIXED records) or maximum size (for VARIABLE
records) of each record.

If you do not specify a record-length, its value is supplied by the peripheral.

If you open a file that does not exist, a file is created with the options you specify. If you open a file that
does exist, the options you specify must be the same as the options that you specified when you created
the file, except that a file with FIXED records can be opened as either SEQUENTIAL or RELATIVE,
regardless of the file-organization that you specified when you created the file.

For more information about the options available with a particular device, refer to the owner's manual
that comes with that device.

MYARC Extended BASIC Il

4.73.5. Examples

100 OPEN #1:"CS1",O0UTPUT,FIXED
Opens a file on cassette. The file is SEQUENTIAL, with data stored in DISPLAY format. The file
is opened in OUTPUT mode with FIXED length records of 64 bytes.

300 OPEN #23:"DSK.MYDISK.X",RELATIVE 100,INTERNAL,FIXED,UPDATE
Opens a file named "X". The file is on the diskette named MYDISK in whichever drive that
diskette is located. The file is RELATIVE, with data kept in INTERNAL format with FIXED
length records of 80 bytes. The file is opened in UPDATE mode and starts with 100 records made
available for it.

100 OPEN #234:A%$,INTERNAL
Where A$ equals "DSK2.ABC", assumes a file on the diskette in drive 2 with a name of ABC. The
fileis SEQUENTIAL, with data kept in INTERNAL format. The file is opened in UPDATE mode
with VARIABLE length records that have a maximum length of 80 bytes.

4.73.6. Program

The following program emulates the use of the SIZE option in an OPEN statement.

100 OPEN #1:"DSK1.LARGE",RELATIVE

110 PRINT #1,REC 100:0

120 CLOSE #1

130 OPEN #1:"DSK1.LARGE",SEQUENTIAL,FIXED
200 CLOSE #1

Line 100 opens a RELATIVE file on diskette.

Line 110 writes to the 100th record, thereby reserving space for 100 contiguous records.
Line 120 closes the file.

Line 130 reopens the file, this time with SEQUENTIAL file organization.

Line 200 closes the file.

151

TEXAS INSTRUMENTS
HOME COMPUTER

4.74. OPTION BASE

4.74.1. Format

OPTION BASE 0
1

4.74.2. Cross Reference

DIM, INTEGER, REAL

4.74.3. Descri ption

The OPTION BASE statement enables you to set the lower limit of array subscripts.

You can use the OPTION BASE statement to specify a lower array-subscript limit of either 0 or 1. If your
program does not include an OPTION BASE statement, the lower limit is set to 0.

The OPTION BASE statement applies to every array in your program. You can have only one OPTION
BASE statement in a program.

If you do not set the lower array-subscript limit to 1, the computer reserves memory for element 0 of each
dimension of each array. To avoid reserving unnecessary memory, it is recommended that you set the
lower limit to 1 if your program does not use element 0.

The OPTION BASE statement must have a lower line number than any DIM statement or any reference
to an array in your program. The OPTION BASE statement is evaluated during pre-scan and is not
executed.

The OPTION BASE statement cannot be part of an IF THEN statement.

4.74.4. Example

100 OPTION BASE 1
Sets the lowest allowable subscript of all arrays to one.

MYARC Extended BASIC Il

4.75. PATTERN sub program

4.75.1. Format

CALL PATTERN(#sprite-number , character-code |,...])

4.75.2. Cross Reference

CHAR, MAGNIFY, SPRITE

4.75.3. Descri ption

The PATTERN subprogram enables you to change the pattern of one or more sprites.

The sprite-number is a numeric expression whose value specifies the number of the sprite as assigned in
the SPRITE subprogram.

Character-code is a numeric expression with a value from 0-255 specifying the character number of the
character you want to use as the pattern for a sprite.

If you use the MAGNIFY subprogram to change to double-sized sprites, the sprite definition includes the
character specified by the character-code and three additional characters (see MAGNIFY).

153

TEXAS INSTRUMENTS
HOME COMPUTER

4.75.4. Program

The following program illustrates the use of the PATTERN subprogram.

100 CALL CLEAR
110 CALL COLOR(12,16,16)

120 FOR A=19 TO 24

130 CALL HCHAR(A,1,120,32)

140 NEXT A

150 A$="01071821214141FFFF4141212119070080E09884848282FFFF8282848498E000"
160 B$="01061820305C4681814246242C180700806018342462428181623A0C0418E000"
170 C$="0106182C2446428181465C3020180700806018040C3A6281814262243418E000"
180 CALL CHAR(244,A$,248,B$,252,C$)

190 CALL SPRITE(#1,244,5,130,1,0,8)

200 CALL MAGNIFY(3)

210 FOR A=244 TO 252 STEP 4

220 CALL PATTERN(#1,A)

230 FOR DELAY=1 TO 15:: NEXT DELAY

240 NEXT A

250 GOTO 210

(Press CLEAR to stop the program.)

Lines 110 through 140 build a floor.

Lines 150 through 180 define characters 244 through 255.

Line 190 creates a sprite in the shape of a wheel and starts it moving to the right.
Line 200 makes the sprite double-sized.

Lines 210 through 250 make the spokes of the wheel appear to move as the character displayed is
changed.

MYARC Extended BASIC Il

4.76. PEEK sub program — Peek at CPU RAM

4.76.1. Format

CALL PEEK(address , numeric-variable-list
[™, address , numeric-variable-list L..ID

4.76.2. Cross Reference

LOAD, PEEKV, POKEV, VALHEX

4.76.3. Descri ption

The PEEK subprogram enables you to ascertain the contents of specified CPU memory addresses.
You can use the PEEKYV subprogram to ascertain the contents of VDP memory.

The address is a numeric expression whose value specifies the first CPU (Central Processing Unit)
memory address at which you want to peek.

The address must have a value from -32768 to 32767 inclusive.
You can specify an address from 0 to 32767 inclusive by specifying the actual address.

You can specify an address from 32768 to 65535 inclusive by subtracting 65536 from the actual address.
This will result in a value from -32768 to -1 inclusive.

If you know the hexadecimal value of the address, you can use the VALHEX function to convert it to a
decimal numeric expression, eliminating the need for manual calculations.

If necessary, the address is rounded to the nearest integer.

The numeric-variable-list consists of one or more numeric-variables separated by commas. Bytes of data
starting from the specified CPU memory address are assigned sequentially to the numeric-variables in
the numeric-variable-list.

One byte, with a value from 0 to 255 inclusive, is returned to each specified numeric-variable.

You can specify multiple addresses and numeric-variable-lists by entering a null string (two adjacent
quotation marks) as a separator between a numeric-variable-list and the next address.

Ifyou call the PEEK subprogram with invalid parameters, the computer may function erratically or cease
to function entirely. If this occurs, turn off the computer, wait several seconds, and then turn the
computer back on again.

155

TEXAS INSTRUMENTS
HOME COMPUTER

4.76.4. Examples

100 CALL PEEK(8192,X1,X2,X3,X4)
Returns the values in memory locations 8192, 8193, 8194, and 8195 in the variables X1, X2, X3,
and X4, respectively.

100 CALL PEEK(22433,A,B,C,",-4276,X,Y,Z)
Returns the values in locations 22433, 22434, and 22435 in A, B, C, respectively; and the values
in locations 61260, 61261, and 61263 in X, Y, and Z, respectively.

100 CALL PEEK(VALHEX("4F55"),V1 V2,V3)
Uses VALHEX to ascertain the decimal equivalent of the hexadecimal number 4F55, which is
20309. Then the values in locations 20309, 20310, and 20311 are returned in V1, V2, and V3,
respectively.

4.76.5. Program

The following program returns in A the number of the highest numbered sprite (#15) currently in use.
A zero is returned to B. because no sprites are defined after the DELSPRITE statement.

100 CALL CLEAR

110 CALL SPRITE(#15,33,7,100,100,0,0)
120 CALL PEEK(VALHEX("837A"),A)
130 CALL DELSPRITE(ALL)

140 CALL PEEK(VALHEX("837A"),B)
150 PRINT A,B

MYARC Extended BASIC Il

4.77. PEEKV Sub program — Peek at VDP RAM

4.77.1. Format

CALL PEEKV(address , numeric-variable-list
[™, address , numeric-variable-list [...])

4.77.2. Cross Reference
LOAD, PEEK, POKEV, VALHEX
4.77.3. Descri ption

The PEEKYV subprogram enables you to ascertain the contents of specified VDP memory addresses. You
can use the PEEK subprogram to ascertain the contents of CPU memory.

The address is a numeric expression whose value specifies the first VDP (Video Display Processor)
memory address at which you want to peek.

The address must have a value from 0 to 16383 inclusive.

If you know the hexadecimal value of the address (0000-3FFF), you can use the VALHEX function to
convert it to a decimal numeric expression.

If necessary, the address is rounded to the nearest integer.

The numeric-variable-list consists of one or more numeric-variables separated by commas. Bytes of data
starting from the specified VDP memory address are assigned sequentially to the numeric variables in
the numeric-variable-list.

One byte, with a value from 0 to 255 inclusive, is returned to each specified numeric variable.

You can specify multiple addresses and numeric-variable-lists by entering a null string (two adjacent
quotation marks) as a separator between a numeric-variable-list and the next address.

If you call the PEEKYV subprogram with invalid parameters, the computer may function erratically. If
this occurs, turn off the computer, wait several seconds, then turn the computer back on.

4.77.4. Example

100 CALL PEEKV(6300,A1,A2,A3)
Returns the values in locations 6300, 6301, and 6302 in A1, A2, and A3, respectively.

157

TEXAS INSTRUMENTS
HOME COMPUTER

4.77.5. Programs

The following program gives an example of the use of PEEKV.

100 CALL CLEAR

110 CALL POKEV(32*16+12,66)
120 CALL PEEKV(32*16+12,A)
130 PRINT A

Line 110 pokes a "B" into a location that causes it to appear in the middle of the screen. Line 120 peeks
at that location, and assigns the value found there (66) to the variable A.

The next program starts a sprite moving diagonally across the screen. Line 120 assigns the values of the
row and column coordinates of the sprite to Y and X, respectively.

100 CALL CLEAR

110 CALL SPRITE(#1,33,5,100 100,25,25)
120 CALL PEEKV(VALHEX("300"),X,Y)
130 DISPLAY AT(24,1):Y;X

140 GOTO 120

(Press CLEAR to stop the program.)

MYARC Extended BASIC Il

4.78. PI function — Pi

4.78.1. Format

PI

4.78.2. Type

REAL

4.78.3. Descri ption

The PI function returns the value of pi.
The value of pi is 3.14159265359.

4.78.4. Example

100 VOLUME=4/3*PI*6"3
Sets VOLUME equal to four-thirds times pi times six cubed, which is the volume of a sphere with
a radius of six.

159

TEXAS INSTRUMENTS
HOME COMPUTER

4.79. POINT sub program

4.79.1. Format

CALL POINT(pixel-type , pixel-row | pixel-column [, pixel-row2 , pixel-column2 [,...]])
4.79.2. Cross Reference

CIRCLE, DCOLOR, DRAW, DRAWTO, FILL, GCHAR, GRAPHICS, RECTANGLE, WRITE
4.79.3. Descri ption

The POINT subprogram enables you to place, or erase specific points (pixels) on the screen, one or more
at a time.

Pixel-type is a numeric-expression whose value specifies the action taken by the POINT subprogram.

TYPE ACTION
2 Reverses the status of the specifies point (pixel). (If a pixel is on, it is turned off; if a pixel
is off, it is turned on). This effectively reverses the color of the specified pixel.

1 Places a point, of the foreground color specified by the DCOLOR subprogram, at a
specified pixel-row and pixel-column. This is accomplished by turning on the pixel at the

designated row and column.

0 Erases a point at a specified pixel-row and pixel-column. This is accomplished by turning
on the pixel at the designated row and column.

Pixel-row and pixel-column are numeric expressions whose values represent the screen position where
the point will be placed (turned on or off).

You can optionally place more points by specifying additional sets of pixels.
Pixel-row must have a value from 1 to 192, pixel-column must have a value from 1 to 256.

The last pixel-row/pixel-column you specify becomes the current position used by the DRAWTO
subprogram.

POINT can only be used in High-Resolution Mode. An error results if you use POINT in Pattern or Text
Modes.

MYARC Extended BASIC Il

4.79.4. Example

100 CALL POINT(1,96,128)
Turns on a single pixel in the center of the screen

161

TEXAS INSTRUMENTS
HOME COMPUTER

4.80. POKEYV sub program — Poke to VDP RAM

4.80.1. Format

CALL POKEV(address , byte-list ['"", address , byte-list [,---1D

4.80.2. Cross Reference

LOAD, PEEK, PEEKV, VALHEX

4.80.3. Descri ption

The POKEV subprogram enables you to assign values directly to specified VDP memory addresses.
You can use the LOAD subprogram to assign values to CPU.

The address is a numeric expression whose value specifies the first VDP (Video Display Processor)
memory address where data is to be poked. If the byte-list specifies more than one byte of data, the bytes
are assigned to sequential memory addresses starting with the address you specify.

The address must have a value from 0 to 16383 inclusive.

If you know the hexadecimal value of the address (0000-3FFF), you can use the VALHEX function to
convert it to a decimal numeric expression.

If necessary, the address is rounded to the nearest integer.

The byte-list consists of one or more bytes of data, separated by commas, that are to be poked into VDP
memory starting with the specified address.

Each byte in the byte-list must be a numeric expression with a value from 0 to 32767. If the value of a
byte is greater than 255, it is repeatedly reduced by 256 until it is less than 256. If necessary, a byte is
rounded to the nearest integer.

You can specify multiple addresses and byte-lists by entering a null string (two adjacent quotation marks)
as a separator between a byte-list and the next address.

Ifyou call the POKEV subprogram with invalid parameters the computer may function erratically. If this
occurs, turn off the computer, wait several seconds, then turn the computer back on.

MYARC Extended BASIC Il

4.80.4. Examples

100 CALL POKEV(3333,233)
Pokes the value 233 into location 3333.

100 CALL POKEV(13784,273)
Pokes the value 17 (273 reduced by 256 once) into location 13784.

100 CALL POKEV(7343,246," VALHEX("2E4F"),433)
Pokes the value 246 into location 7343, and uses VALHEX to ascertain the decimal equivalent
of the hexadecimal number 2E4F (11855). The value 177 (433 reduced by 256 once) is then poked
into this location.

4.80.5. Program

The following program uses POKEV to display on the screen the characters that correspond to ASCII
codes 65 through 208, at the location specified by the value of R*32+C.

100 CALL CLEAR::X=65

110 FORR=0TO 23

120 FOR C=0TO 31 STEP 6
130 CALL POKEV(R*32+C,X)
140 X=X+1

150 NEXT C

160 NEXT R

163

TEXAS INSTRUMENTS
HOME COMPUTER

4.81. POS Function — Position

4.81.1. Format

POS(string-expression , substring , numeric-expression)

4.81.2. Type

DEFINT

4.81.3. Descri ption

The POS function returns the position of the first occurrence of a substring within a specified string.

The string-expression specifies the string within which you are seeking the substring. If you use a string
constant, it must be enclosed in quotation marks.

The substring is the segment (of the string-expression) you are trying to locate. The substring is a string
expression; if you use a string constant, it must be enclosed in quotation marks.

The value of the numeric-expression specifies the character position in the string-expression where the
search for the substring begins.

If necessary, the value of the numeric-expression is rounded to the nearest integer.

Ifthe substring is present within the string-expression, POS returns the number of the character position
(within the string-expression) of the first character of the substring.

If the substring is not present, or if the value of the numeric-expression is greater than the number of
characters in the string-expression, POS returns a zero.

MYARC Extended BASIC Il

4.81.4. Examples

100 X=POS("PAN","A",1)
Sets X equal to 2 because A is the second letter in PAN.

100 Y=POS("APAN","A",2)
Sets Y=3 because the A in the third position in APAN is the first occurrence of A in the portion
of APAN that was searched.

100 Z=POS("PAN","A",3)
Sets Z equal to 0 because A was not in the part of PAN that was searched.

100 R=POS("PABNAN","AN",])
Sets R equal to 5 because the first occurrence of AN starts with the A in the fifth position in
PABNAN.

4.81.5. Program

The following program illustrates a use of POS. Input is searched for spaces, and is then printed with
each word on a single line.

100 CALL CLEAR

110 PRINT "ENTER A SENTENCE."

120 LINPUT X$

130 S=POS(X$," ",1)

140 IF S=0 THEN PRINT X$::PRINT::GOTO 110
150 Y$=SEG$(X$,1,S)::PRINT Y$

160 X$=SEG$(X$,S+1,LEN(X$))

170 GOTO 130

(Press CLEAR to stop the program.)

165

TEXAS INSTRUMENTS
HOME COMPUTER

4.82. POSITION sub program

4.82.1. Format

CALL POSITION(# sprite-number |, numeric-variable1 , humeric-variable2 [,--])

4.82.2. Cross Reference

SPRITE

4.82.3. Descri ption

The POSITION subprogram enables you to ascertain the current position of one or more sprites.

The sprite-number is a numeric expression whose value specifies the number of the sprite as assigned in
the SPRITE subprogram.

The current screen position of a sprite is returned as two numeric-variables representing the pixel-row
and pixel-column, respectively, specifying the position of a screen pixel.

The screen position of the pixel in the upper-left corner of a sprite is considered to be the position of that
sprite.

Note that a sprite in motion continues to move during and following the execution of the POSITION
subprogram. Remember to allow for this continued motion in your program.

4.82.4. Example

100 CALL POSITION(#1,Y,X)
Returns the position of the upper left corner of sprite #1. Also see the third example of the
SPRITE subprogram.

MYARC Extended BASIC Il

4.83. PRINT
4.83.1. Format

Print to the Screen

PRINT [print-list]

Print to a File (or Device)

PRINT # file-number [[REC record-number][: print-list]
4.83.2. Cross Reference

DISPLAY, OPEN, PRINT USING, TAB

4.83.3. Descri ption

The PRINT instruction enables you to display data items on the screen or print them to an external
device. You can use PRINT as either a program statement or a command.

The print-list consists of one or more print items (items to be printed or displayed) separated by print
separators. A PRINT instruction without a print-list advances the print position to the first position of
the next record. This has the effect of printing a blank record, unless the preceding PRINT instruction
ended with a print-separator.

The numeric and/or string expressions in the print-list can be constants and/or variables.

Print items are the numeric and string expressions to be printed. Any function is also a valid print item.

Print separators are the punctuation (commas, semicolons, and colons) between print items specifying
the placement of the print items in the print record.

4.83.4. Printin g to the Screen

Each print item is displayed in the row of the screen window defined by the margins, starting from the
far left column of the window. Before a new line is displayed at the bottom of the window, the entire
contents of the window (excluding sprites) scroll up one line to make room for the new line. The contents

of the top line of the window scroll off the screen and are discarded.

Each line on the screen is treated as one print record. The record length of the screen is the width of the
window.

In High-Resolution Mode, attempting to print to the screen has no effect. See Appendix K.

167

TEXAS INSTRUMENTS
HOME COMPUTER

4.83.5. Printin g to a File

If you include an optional file-number, the print-list is sent to the specified device. The file-number is a
numeric expression whose value specifies the number of the file as assigned in its OPEN instruction. You
cannot print to a file opened in INPUT mode.

If you do not specify a file-number (or if you specify file-number 0), the print-list is displayed on the
screen.

If you use the REC option, the record-number is a numeric expression whose value specifies the number
of the record in which you want to print the print-list. The records in a file are numbered sequentially,
starting with zero. The REC option can be used only with a file opened for RELATIVE access.

If you print to a file opened in INTERNAL format with FIXED records, each record is filled with trailing
binary zeros, if necessary, to bring it to its specified length.

If a record is longer than the record length of the file, it is truncated (extra characters are discarded).

For more information about printing to a particular device, refer to the owner's manual that comes with
that device.

4.83.6. Printin g Numbers: INTERNAL Files

The amount of memory space allocated to a number printed to a file opened in INTERNAL format varies
according to its data-type. A DEFINT is always allocated 3 bytes, whereas a REAL number is always
allocated 9 bytes.

Note that if you print a DEFINT value to a file, you cannot access that file on a Home Computer that
does not support the INTEGER data-type. You can circumvent this by converting all DEFINT variables
and functions to REAL variables before printing them to a file.

MYARC Extended BASIC Il

4.83.7. Printin g Numbers: The Screen and DISPLAY Files

The format of a number printed to the screen or to a file opened in DISPLAY format varies according to
the characteristics of the number.

Positive numbers and zero are printed with a leading space (instead of a plus sign); negative numbers are
printed with a leading minus sign. All numbers are printed with a trailing space.

Numbers are printed in either decimal form or scientific notation, according to these rules:

L] All numbers with 10 or fewer digits are printed in decimal form.

REAL numbers with more than 10 digits are printed in scientific notation only if they can be
presented with more significant digits in scientific notation than in decimal form. If printed in
decimal form, all digits beyond the tenth are omitted.

If a number is printed in decimal form, the following rules apply:

L] DEFINT numbers and REAL numbers with no decimal portion are printed without decimal
points.
L] REAL numbers are printed with decimal points in the proper position. if the number has more

than 10 digits, it is rounded to 10 digits. A zero is not printed by itself to the left of the decimal
point. Trailing zeros after the decimal point are omitted.

If number is printed in scientific notation, the following rules apply:

L] The format is mantissaEexponent.

The mantissa is printed with six or fewer digits, with one digit to the left of the decimal point.

L] Trailing zeros are omitted after the decimal point of the mantissa.

L] If there are more than five digits after the decimal point of the mantissa, the fifth digit is
rounded.

L] The exponent is a two-digit number displayed with a plus or minus sign.

L] If you attempt to print a number with an exponent greater than 99 or less than -99, the computer

prints two asterisks (**) following the sign of the exponent.

169

TEXAS INSTRUMENTS
HOME COMPUTER

4.83.8. Printin g Strings

A string constant in a print-list must be enclosed in quotation marks. A quotation mark within a string
constant is represented by two adjacent quotation marks.

A string printed to a file opened in INTERNAL format has a length one greater than the length of the
string.

When a string is printed to the screen or to a file opened in DISPLAY format, no leading or trailing spaces
are added to the string.

4.83.9. Print Se parators

At least one print separator must be placed between adjacent print items in the print-list. Valid print
separators are the semicolon (;), the colon and the comma (,):

L] A semicolon (;) print separator causes the next print item to print immediately after the current
print item.
L] A colon (:) print separator causes the next print item to print at the beginning of the next record.

Consecutive colons used as print separators must be divided by a space. Otherwise, they are
treated as a statement separator symbol.

If you print to the screen or to a file opened in DISPLAY format, a comma (,) print separator
causes the next print item to print at the beginning of the next "zone". Print records are divided
into 14-character zones; the number of zones in a print record varies according to its record
length. If you print to a file opened in INTERNAL format, a comma print separator has the same
effect as a semicolon print separator.

If a print separator would have the effect of splitting the next print item between two records, the print
item is moved to the beginning of the following record. However, if discarding the trailing space from a
numeric print item allows it to fit in the current record, the number is printed in the current record
without its trailing space.

If the print-list ends with a print separator, the computer is placed in a print-pending condition. Unless
the next PRINT instruction includes the REC option, it is considered to be a continuation of the current
PRINT instruction. RESTORE #file-number terminates a print-pending condition.

If the print-list is not terminated by a print separator, the computer considers the current record
complete when all the print items in the print-list are printed. The first print-item in the next PRINT
instruction begins in the next record.

MYARC Extended BASIC Il

4.83.10. Examples

100 PRINT
Causes a blank line to appear on the display screen.

100 PRINT "THE ANSWER IS";A
Causes the string constant THE ANSWER IS to be printed on the display screen, followed
immediately by the value of ANSWER. If ANSWER is positive, there will be a blank for the
positive sign after IS.

100 PRINT X:Y/2
Causes the value of X to be printed on a line and the value of Y/2 to be printed on the next line.

100 PRINT #12,REC 7:A
Causes the value of A to be printed on the eighth record of the file that was opened as number
12 with RELATIVE file organization. (Record number 0 is the fist record.)

100 PRINT #32:A,B,C,
Causes the values of A, B, and C to be printed on the next record of the file that was opened as
number 32. The final comma creates a pending print-condition. The next PRINT statement
directed to file number 32 will print on the same record as this PRINT statement unless it
specifies a record, or a RESTORE #32 statement is executed, thereby closing the print-pending
print condition.

100 PRINT #1,REC 3:A,B
150 PRINT #1:C,D

Causes A and B to be printed in record 3 of the file that was opened as number 1. PRINT #1:C,D
causes C and D to be printed in record 4 of the same file.

171

TEXAS INSTRUMENTS
HOME COMPUTER

4.83.11. Program

The following program prints out values in various positions on the screen.

100 CALL CLEAR
110 PRINT 1;2;3;4;5;6;7;8;9
120 PRINT 1,2,3,4,5,6
130 PRINT 1:2:3

140 PRINT

150 PRINT 1;2;3;

160 PRINT 4;5;6/4
RUN

123456789

2

4

6

WNPFPOITWPEF

1234515

MYARC Extended BASIC Il

4.84. PRINT USING
4.84.1. Format

Print to the Screen

PRINT USING format-string [print-list]
line-number

Print to a File (or Device)

PRINT # file-number [[REC record-number],USING format-string [print-list]
line-number

4.84.2. Cross Reference

IMAGE, PRINT

4.84.3. Descri ption

The PRINT USING instruction enables you to define specific formats for numbers and strings you print.
You can use PRINT USING as either a program statement or a command.

The format-string specifies the print format. The format-string is a string expression; if you use a string
constant you must enclose it in quotation marks. See IMAGE for an explanation of format-strings.

You can optionally define a format-string in an IMAGE statement, as specified by the line-number.
See PRINT for an explanation of the print-list print options.

The PRINT USING instruction is identical to the PRINT instruction with the addition of the USING
option, except that:

u You cannot use the TAB function.

You cannot use any print separator other than a comma (,), except that the print-list can end
with a semicolon (;).

If you use PRINT USING to print to a file, the file must have been opened in DISPLAY format.

173

TEXAS INSTRUMENTS
HOME COMPUTER

4.84.4. Examples

100 PRINT USING "###.##":32.5
Prints 32.50.

100 PRINT USING "THE ANSWER IS ###.#":123.98
Prints THE ANSWER IS 124.0.

100 PRINT USING 185:37.4,-86.2
185 IMAGE ###.#

Prints the values of 37.4 and -86.2 using the IMAGE statement in line 185.

MYARC Extended BASIC Il

4.85. RANDOMIZE

4.85.1. Format
RANDOMIZEEeed]

4.85.2. Cross Reference
RND
4.85.3. Descri ption

The RANDOMIZE instruction varies the sequence of pseudo-random numbers generated by the RND
function.

You can use RANDOMIZE as either a program statement or a command.

The optional seed is a numeric expression whose value specifies the random number sequence to be
generated by RND functions. The first two bytes of the internal representation of the value of the seed
determine the random number sequence generated by RND. If the first two bytes of the seed are identical
each time you run your program, the same random number sequence is generated.

If you do not enter a seed, a different and unpredictable sequence of random numbers is generated by
RND each time you run your program.

4.85.4. Program

The following program illustrates a use of the RANDOMIZE statement. It accepts a value for the seed
and prints the first 10 values obtained using the RND function

100 CALL CLEAR

110 INPUT "SEED: ":S

120 RANDOMIZE S

130 FOR A=1 TO 10::PRINT A;RND::NEXT A::PRINT
140 GOTO 110

(Press CLEAR to stop the program.)

175

TEXAS INSTRUMENTS
HOME COMPUTER

4.86. READ

4.86.1. Format

READ variable-list
4.86.2. Cross Reference
DATA, RESTORE
4.86.3. Descri ption

The READ statement enables you to assign constants (stored within your program in DATA statements)
to variables.

The variable-list, consisting of one or more variables separated by commas, specifies the numeric and/or
string variables that are to be assigned values. When a READ statement is executed, the variables in its
variable-list are assigned values from the data-list of a DATA statement. Unless you use a RESTORE
statement to specify otherwise, DATA statements are read in ascending line-number order.

If a data-list does not contain enough values to assign to all the variables, the READ statement assigns
values from subsequent DATA statements until all the variables have been assigned a value. If there are
no more DATA statements, a program error occurs and the message DATA ERROR IN (LINENU MBER)
is displayed.

If a numeric variable is specified in the variable-list, a numeric constant must be in the corresponding
position in the data-list of a DATA statement. If a string variable is specified in the variable-list, either

a string or a numeric constant can be in the corresponding position in the DATA statement.

See the DATA statement for examples.

MYARC Extended BASIC Il

4.87. REAL

4.87.1. Format

REAL numeric-variable-list
REAL ALL

4.87.2. Cross Reference

DEF, DIM, DEFINT, OPTION BASE, SUB

4.87.3. Descri ption

The REAL instruction enables you to declare the data type of specified numeric variables as REAL.

REAL variables have a greater range of values than do DEFINT variables and can contain decimal
portions. You can use REAL as either a program statement or a command.

The numeric-variable-list consists of one or more numeric variables separated by commas. The variables
are all assigned the REAL data type. A REAL statement with a numeric-variable-list must have a line
number lower than any program reference to any variable in that list.

If you enter the ALL option, all numeric variables in your program are assigned the REAL data-type
unless specifically declared as DEFINT. A REAL statement with the ALL option must have aline number

lower than any program reference to any numeric variable or array.

When REAL ALL is used as a command, it does not affect any variables unless they follow it on a
multiple-statement line.

A REAL ALL statement in your main program does not affect the data type of a numeric variable in a
subprogram.

A numeric variable of the REAL data-type can be of any number that can be expressed by the computer.

If you do not specify the data type of a numeric variable, it is assigned the REAL data-type (unless your
program includes a DEFINT ALL statement or defines the specific variable as an integer).

REAL statements are evaluated during pre-scan, and are not executed.

You can also declare REAL variables by using the data-type option in the DEF, DIM, and SUB
statements.

177

TEXAS INSTRUMENTS
HOME COMPUTER

4.87.4. Examples

REAL A
As a command, specifies that the variable A is a real number.

100 REAL ALL

As a statement, specifies that all numeric variables in the program are real numbers, unless
specifically declared as DEFINT.

100 REAL X(20)

Reserves space in memory for 21 real number elements of array X if it is not preceded by an
OPTION BASE 1 statement.

MYARC Extended BASIC Il

4.88. REC function — Record Number

4.88.1. Format

REC(file-number)

4.88.2. Type

DEFINT

4.88.3. Descri ption

The REC function returns a record number reflecting the position of the next record in the specified file.

The file-number is a numeric expression whose value specifies the number of the file as assigned in its
OPEN instruction.

The REC function returns the number of the record in the specified file that is to be accessed by the next
PRINT, INPUT, or LINPUT instruction (the next sequential record). (REC always treats a file as if it
were being accessed sequentially, even if it has been opened for relative access.)

The records in a file are numbered sequentially starting with zero.

4.88.4. Example

100 PRINT REC(4)
Prints the position of the next record in the file that was opened as number 4.

179

TEXAS INSTRUMENTS
HOME COMPUTER

4.88.5. Program

The following program illustrates a use of the REC function.

100 CALL CLEAR
110 OPEN #1:"DSK1.PROFILE",RELATIVE,INTERNAL
120 FOR A=0 TO 3
130 PRINT #1:"THIS IS RECORD",A
140 NEXT A

150 RESTORE #1
160 FOR A=0 TO 3
170 PRINT REC(1)
180 INPUT #1:A$,B
190 PRINT A$:B
200 NEXT A

210 CLOSE #1
RUN

0

THIS IS RECORD 0
1

THIS IS RECORD 1
2

THIS IS RECORD 2
3

THIS IS RECORD 3

Line 110 opens a file.

Lines 120 through 140 write four records on the file.

Line 150 resets the file to the beginning.

Lines 160 through 200 print the file position and read and print the values at that position.

Line 210 closes the file.

MYARC Extended BASIC Il

4.89. RECTANGLE sub program

4.89.1. Format

CALL RECTANGLE(ine-type , pixel-rowl , pixel-columnl |
pixel-row2 , pixel-column2 | pixel-row3 | pixel-column3 [,...])

4.89.2. Cross Reference

CIRCLE, DCOLOR, DRAW, DRAWTO, FILL, GRAPHICS, POINT, WRITE

4.89.3. Descri ption

The RECTANGLE subprogram enables you to place rectangles of various types and proportions on the

screen.

Rectangles may be hollow (only the perimeter of the rectangle is drawn), or solid (both the perimeter and
the entire area enclosed by the perimeter is drawn).

Line-type is a numeric-expression whose value specifies the action taken by the RECTANGLE

subprogram.

TYPE ACTION

5

Reverses the status of each pixel of the specified rectangle (solid). (If a pixel is on, it is
turned off; if a pixel is off, it is turned on). This effectively reverses the color of the
specified rectangle.

Draws a rectangle (solid), of the foreground color specified by the DCOLOR subprogram.
This is accomplished by turning on each pixel in the specified rectangle.

Erases a rectangle (solid). This is accomplished by turning off each pixel in the specified
rectangle.

Reverses the status of each pixel in the perimeter of the specified rectangle. (If a pixel is
on, it is turned off; if a pixel is off, it is turned on). This effectively reverses the color of
the perimeter.

Draws the perimeter of a rectangle, of the foreground color specified by the DCOLOR
subprogram. This is accomplished by turning on each pixel in the specified rectangle.

Erases the perimeter of a rectangle. This is accomplished by turning off each pixel in the
specified rectangle.

181

TEXAS INSTRUMENTS
HOME COMPUTER

Pixel-row(#), and pixel-column(#), are numeric expressions whose values represent the screen positions
of specific points of the rectangle. There are three points needed to define the rectangle, as shown below.

Pixel-row1 / pixel-column1 specify the TOP LEFT corner of the rectangle.

Pixel-row?2 / pixel-column2 specify the TOP RIGHT corner of the rectangle.

Pixel-row3 / pixel-column3 specify the BOTTOM LEFT corner of the rectangle.
All pixel-rows must have a value from 1 to 192. All pixel-columns must have a value from 1 to 256.
Note that the first pixel set (pixel-rowl and pixel-columnl) represents the top leftmost point of the
rectangle and must have a lower column value than the second pixel set. The second pixel set represents
the top rightmost point of the rectangle. In the same manner, the third pixel set, which represents the
bottom leftmost point of the rectangle, must have a higher row value than setl or set2.

If the procedure outlined above is not followed, an error is issued.

You can optionally draw more rectangles by specifying additional sets of pixels. You must specify three
sets of pixels for each rectangle.

The bottom-rightmost point of the last rectangle drawn becomes the current position used by the
DRAWTO subprogram.

RECTANGLE can only be used in High-Resolution Mode. An error results if you use RECTANGLE in
Pattern or Text Modes.

MYARC Extended BASIC Il

4.89.4. Program

100 CALL GRAPHICS(3)

110 CALL RECTANGLE(1,8,80,8,175,134,80)

120 FOR T=1 TO 8:: CALL RECTANGLE(4,T*16,100,T*16,155,T*16+T-1,100):: NEXT T
130 FOR DELAY=1 TO 2000:: NEXT DELAY

140 CALL RECTANGLE(3,16,100,16,155,128,100)

150 FOR DELAY=1 TO 2000:: NEXT DELAY
160 END

Line 100 selects High-Resolution Mode (and clears the screen).

Line 110 draws a large box on the screen.

Line 120 uses a FOR-NEXT loop to fill the box with lines of different thickness. (This shows how
RECTANGLE could be used to replace DRAW. RECTANGLE is slower, but more versatile).

Line 130 uses a FOR-NEXT loop to delay execution of the next statement.
Line 140 clears the lines, but leaves the box to illustrate how RECTANGLE can be used as an eraser.
Line 150 delays the execution of the next statement.

Line 160 ends the program.

183

TEXAS INSTRUMENTS
HOME COMPUTER

4.90. REM — Remark

4.90.1. Format

REM remark
! remark

4.90.2. Descri ption

The REM statement enables you to document your program by including explanatory remarks within
the program itself.

You can use any character in a remark.

The length of a REM statement is limited only by the length of a program statement.

A REM statement encountered during program execution is ignored by the computer.

4.90.3. Trailin g Remarks

In addition to the REM statement, trailing remarks can be added to the ends of lines in MYARC Extended
BASIC II, allowing detailed internal documentation of programs. An exclamation mark (!) begins each

trailing remark.

4.90.4. Example

100 REM BEGIN SUBROUTINE
Identifies a section beginning a subroutine.

100 FOR X=11t0 16 ! BEGIN LOOP
Identifies a section beginning a FOR-NEXT loop.

MYARC Extended BASIC Il

4.91. RESEQUENCE

4.91.1. Format

RESEQUENCE |nitial-line-number I, increment |
RES

4.91.2. Descri ption
The RESEQUENCE command assigns new line numbers to all lines in the program currently in memory.

If you enter an initial-line-number, the first line number assigned is one you specify. If you do not specify
an initial-line-number, the computer starts with line number 100.

Succeeding line numbers are assigned by adding the value of the numeric expression increment to the
previous line number. Note that to specify an increment only (without specifying an initial-line-number),
you must precede the increment with a comma. The default increment is 10.

To ensure that your program continues to function properly, all line-number references within your
program are changed to reflect the newly assigned line numbers. (Line numbers mentioned in REM
statements are not affected.) If an invalid line-number reference (a reference to a line number that does
not exist in your program) is encountered, tne computer changes the line-number reference to 32767,
without displaying any error message or warning.

If the values you enter for the initial-line-number and increment would have the effect of creating a line
number greater than 32767, the message BAD LINE NUMBER is displayed and the program is not
resequenced.

4.91.3. Examples

RES
Resequences the lines of the program in memory to start with 100 and number by 10s.

RES 1000
Resequences the lines of the program to start with 1000 and number by 10s.

RES 1000,15
Resequences the lines of the program in memory to start with 1000 and number by 15s.

RES 15
Resequences the lines of the program in memory to start with 100 and number by 15s.

185

TEXAS INSTRUMENTS
HOME COMPUTER

4.92. RESTORE
4.92.1. Format

Restore Data

RESTORE [line-number]

Restore a File

RESTORE #file-number [,REC record-number]
4.92.2. Cross Reference

DATA, INPUT, PRINT, READ

4.92.3. Descri ption

The RESTORE instruction specifies either the DATA statement to be used with the next READ
statement or the record to be accessed by the next file-processing instruction.

4.92.4. RESTORE with DATA and READ Statements

If you enter a line-number, the next READ statement executed assigns values beginning from the
data-list in the specified DATA statement.

If the specified line-number is not the line-number of a DATA statement, the computer uses the first
DATA statement with a line-number higher than the one you specified.

If there is no higher numbered DATA statement, a program error occurs and the message DATA ERROR
IN(LINE NUMBERjsdisplayed (the line-number is the line number of the READ statement that caused
the error).

If you do not enter a line-number or a file-number, the next READ statement executed assigns values
beginning from the data-list of the first DATA statement in your program.

If there are no DATA statements in your program, the message DATA ERROR IN (LINE NUMBER) is
displayed.

MYARC Extended BASIC Il

4.92.5. RESTORE with a File

If you enter a file-number, RESTORE repositions the specified file at its first record, record zero (unless
you use the REC option). The file-number is a numeric expression whose value specifies the number of
the file as assigned in its OPEN instruction.

Ifyou use the REC option, the record-number is a numeric expression specifying the number of the record
at which you want to position the file. The records in a file are numbered sequentially, starting with zero.
The REC option can be used only with a file opened for RELATIVE access.

RESTORE terminates any print- or input-pending conditions.

4.92.6. Examples

100 RESTORE
Sets the next DATA statement to be used to the first DATA statement in the program.

100 RESTORE 130
Sets the next DATA statement to be used to the DATA statement at line 130 or, if line 130 is not
a DATA statement, to the next DATA statement after line 130.

100 RESTORE #1

Sets the next record to be used by the next PRINT, INPUT, or LINPUT statement using file #1
to be the first record in the file.

100 RESTORE #4,REC H5

Sets the next record to be used by the next PRINT, INPUT, or LINPUT statement using file #4
to be record H5.

187

TEXAS INSTRUMENTS
HOME COMPUTER

4.93. RETURN
4.93.1. Format

With GOSUB and ON GOSUB
RETURN

With ON ERROR

RETURN [NEXT
line-number]

4.93.2. Cross Reference
GOSUB, ON GOSUB, ON ERROR
4.93.3. Descri ption

The RETURN statement causes program control to return to the main program from a subroutine called
by a GOSUB, ON GOSUB, or ON ERROR statement.

4.93.4. RETURN with GOSUB and ON GOSUB
When the computer encounters a RETURN statement in a subroutine called by a GOSUB or ON GOSUB
statement, program control returns to the statement immediately following the GOSUB or ON GOSUB

statement.

No options are allowed with a RETURN statement in a subroutine called by a GOSUB or ON GOSUB
statement.

4.93.5. RETURN with ON ERROR

The action taken by the computer when it encounters a RETURN statement in a subroutine called by
an ON ERROR statement depends on the RETURN option.

If you specify the NEXT option, program control returns to the statement immediately following the
statement that caused the error.

If you specify a line-number, program control is transferred to the specified program statement.

If you do not specify an option, program control returns to the statement that caused the error. The
statement is re-executed.

RETURN "clears" the error, so that it can no longer be analyzed by the ERR subprogram.

MYARC Extended BASIC Il

4.93.6. Programs

The following program illustrates a use of RETURN as used with GOSUB. The program figures interest
on an amount of money put into savings.

100 CALL CLEAR

110 INPUT "AMOUNT DEPOSITED: ":AMOUNT
120 INPUT "ANNUAL INTEREST RATE: ":RATE
130 IF RATE>1 THEN RATE=RATE*100

140 PRINT "NUMBER OF TIMES COMPOUNDED"
150 INPUT "ANNUALLY: ":COMP

160 INPUT "STARTING YEAR: ™Y

170 INPUT "NUMBER OF YEARS: ":N

180 CALL CLEAR

190 FOR A=Y TO Y+N

200 GOSUB 240

210 PRINT A,INT(AMOUNT* 100+.5)/100

220 NEXT A

230 STOP

240 FOR B=1 TO COMP

250 AMOUNT=AMOUNT+AMOUNT*RATE/(COMP*100)
260 NEXT B

270 RETURN

189

TEXAS INSTRUMENTS
HOME COMPUTER

The following program illustrates the use of RETURN with ON ERROR.

100 CALL CLEAR
110 A=1

120 ON ERROR 160

130 X=VAL("D")

140 PRINT 140

150 STOP

160 REM ERROR HANDLING
170 IF A>4 THEN 220

180 A=A+1

190 PRINT 190

200 ON ERROR 160

210 RETURN

220 PRINT 220 :: RETURN NEXT

Line 120 causes an error to transfer control to line 160. Line 130 causes an error.
Line 170 checks to see if the error has occurred four times and transfers control to 220 if it has. Line 180
increments the error counter by one. Line 190 prints 190. Line 200 resets the error handling to transfer

to line 160. Line 210 returns to the line that caused the error and executes it again.

Line 220, which is executed only after the error has occurred four times, prints 220 and returns to the
line following the line that caused the error.

Line 140, the next one after the one that causes the error, prints 140.

Also see example of the ON ERROR statement.

MYARC Extended BASIC Il

4.94. RND function — Random Number

4.94.1. Format
RND

4.94.2. Type

REAL

4.94.3. Cross Reference

RANDOMIZE

4.94.4. Descri ption

The RND function returns a pseudo-random number.

RND returns the next pseudo-random number in the current series of pseudo-random numbers. The
number returned is always greater than or equal to 0 and less than 1.

The numbers returned by RND are called "pseudo-random" because they are not generated strictly at
random, but are generated as members of predefined series. You can use the RANDOMIZE instruction
to make the numbers generated by RND more random.

The same sequence of random numbers is generated by RND each time you run a particular program
unless the program includes a RANDOMIZE instruction.

4.94.5. Examples

100 COLOR16=INT(RND*16)+1
Sets COLOR16 equal to some number from 1 through 16.

100 VALUE=INT(RND*16)+10
Sets VALUE equal to some number from 10 through 25.

100 LL(8)=INT(RND*(B-A+1))+A
Sets LL(8) equal to some number from A through B.

191

TEXAS INSTRUMENTS
HOME COMPUTER

4.95. RPT$ function — Re peat Strin g

4.95.1. Format

RPTS$(string-expression , humeric-expression)

4.95.2. Type

String

4.95.3. Descri ption

The RPT$ function returns a string consisting of a specified string repeated a specified number of times.

The string-expression specifies the string to be repeated. If you use a string constant, it must be enclosed
in quotation marks.

The value of the numeric-expression specifies the number of repetitions of the string-expression.

If the length of the string-expression and the value of the numeric-expression would create a string longer
than 255 characters, the excess characters are discarded and the following message is displayed;

*WARNING
STRING TRUNCATED

4.95.4. Examples

100 M$=RPT$("ABCD" 4)
Sets M$ equal to "ABCDABCDABCDABCD"

100 CALL CHAR(244,RPT$("0000FFFF",8))
Defines characters 244 through 247 with the string
"0000FFFFO0000FFFFO000FFFFO0000FFFFO000FFFFO000FFFFOO00FFFFOO00FFFF"

100 PRINT USING RPT$("#",40):X$
Prints the value of X$ using an image that consists of 40 number signs.

MYARC Extended BASIC Il

4.96. RUN
4.96.1. Format

Execute Pro gram in Memor y

RUN [line-number]

Execute Pro gram on External Device

RUN file-specification
4.96.2. Descri ption

The RUN instruction causes the computer either to execute the program currently in memory or to both
load and execute a program from an external. You can use RUN as either a program statement or a
command.

When you use RUN as a program statement, one program can start the execution of another program.
This enables you to divide a large program into smaller segments, each of which can be loaded into
memory only as needed.

If you specify a line-number, your program starts running at the specified program line.
If you enter a file-specification, your program is first loaded into memory from the specified external
device, and then executed starting from the lowest-numbered line in the program. The file-specification

is a string expression; if you use a string constant, you must enclose it in quotation marks.

If you do not enter either a line-number or a file-specification, the computer executes the program
currently in memory starting with the lowest-numbered line in the program.

193

TEXAS INSTRUMENTS
HOME COMPUTER

Before the program starts running, the computer:

u Sets the values of all numeric variables to zero.

Sets the values of all string variables to null strings (strings containing no characters).

L] Closes all open files.

| Restores the default screen color (cyan).
L] Deletes all sprites.

L] Resets the sprite magnification level to 1.
L] Checks for certain program errors.

RUN does not affect the graphics mode, margin settings, graphics colors (see DCOLOR), or current
position (see DRAWTO).

4.96.3. Examples

RUN
Causes the computer to begin execution of the program in memory.

RUN 200
100 RUN 200

Causes the computer to begin execution of the program in memory starting at line 200.

RUN "DSK1.PRG3"
100 RUN "DSKI.PRG3"

Causes the computer to load and begin execution of the program named PRG3 from the diskette
in disk drive 1.

100 A$="DSK1.MYFILE"

110 RUN A$
Causes the computer to load and begin execution of the program named MYFILE from the
diskette in disk drive 1.

MYARC Extended BASIC Il

4.96.4. Program

The following program illustrates the use of the RUN command used as a statement. It creates a "menu"
and lets the person using the program choose what other program he wishes to run. The other programs
should RUN this program rather than ending in the usual way, so that the menu is given again after they
are finished.

100 CALL CLEAR

110 PRINT "1 PROGRAM 1."

120 PRINT "2 PROGRAM 2."

130 PRINT "3 PROGRAM 3."

140 PRINT "4 END."

150 PRINT

160 INPUT "YOUR CHOICE: "C

170 IF C=1 THEN RUN "DSK1.PRG1"
180 IF C=2 THEN RUN "DSK1.PRG2"
190 IF C=3 THEN RUN "DSK1.PRG3"
200 IF C=4 THEN STOP

210 GOTO 100

195

TEXAS INSTRUMENTS
HOME COMPUTER

4.97. SAVE

4.97.1. Format

SAVE file-specification [LMERGE
PROTECTED]

4.97.2. Cross Reference
MERGE, OLD
4.97.3. Descri ption

The SAVE command copies the program in memory to an external storage device. When you are using
SAVE, your program remains in memory, even if an error occurs.

The saved program can later be loaded back into memory with the OLD command.

The file-specification names the program to be stored (see "File Specifications). The file-specification, a
string constant, optionally can be enclosed in quotation marks.

To specify that your program is to be available for merging with other programs, use the MERGE option.
If you use the MERGE option, the program is stored as a SEQUENTIAL file in DISPLAY format with
VARIABLE records (see OPEN); MERGE can be used only with devices that accept these options.

For more information about using MERGE with a particular device, refer to the owner's manual that
comes with that device.

If you do not use the MERGE option, your program cannot later be merged with another program.

If you use the PROTECTED option, you ensure that the program, when subsequently loaded with the
OLD command, cannot be listed, edited, or saved.

A protected program starts executing automatically when it is loaded; when the program ends (either
normally or because of an error) or stops at a breakpoint, it is erased from memory. As the PROTECTED
option is not reversible, it is recommended that you keep an unprotected version of the program. If you
also wish to protect a diskette-based program from being deleted, use the protect feature of the Disk
Manager cartridge.

SAVE removes any breakpoints you have set in your program.

MYARC Extended BASIC Il

4.97.4. Examples

SAVE DSK1.PRG1
Saves the program in memory on the diskette in disk drive 1 under the name PRG1.

SAVE DSK1.PRG1,PROTECTED
Saves the program in memory on the diskette in disk drive 1 under the name PRG1. The program
may be loaded into memory, but it may not be edited, listed, or resaved.

SAVE DSK1.PRG1,MERGE
Saves the program in memory on the diskette in disk drive 1 under the name PRG1. The program
may later be merged with a program in memory by using the MERGE command.

197

TEXAS INSTRUMENTS
HOME COMPUTER

4.,98. SAY sub program

4.98.1. Format

CALL SAY(word-string [, direct-string LD

4.98.2. Cross Reference

SPGET

4.98.3. Descri ption

The SAY subprogram enables you to instruct the computer to produce speech.

Word-string is a string-expression whose value is any of the words or phrases in the computer's resident
vocabulary. If you use a string constant, you must enclose it in quotation marks. Alphabetic characters
must be upper-case.

The computer substitutes "UHOH" for a word-string not in the vocabulary.

A speech phrase (more than one word) must be enclosed in pound signs (#). A speech phrase must be
predefined; that is, it must be resident in the computer's vocabulary.

A compound is a new word formed by combining two words already in the vocabulary. For example,
SOME+THING produces "something" and THERE+FOUR produces "therefore". A compound must not
be enclosed in pound signs.

See Appendix H for a list of the computer's resident vocabulary.

Direct-string is a string expression whose value is the computer's internal representation of a word or
phrase. You can use or modify a direct-string returned by the SPGET subprogram.

See Appendix I for information on adding suffixes to direct-strings. You can specify multiple word-strings
and direct-strings by alternating them. To specify two consecutive word-strings or direct-strings, enter
an extra comma as a separator between them.

4.98.4. Examples

100 CALL SAY("HELLO, HOW ARE YOU")
Causes the computer to say "Hello, how are you".

CALL SAY(,A$,,B%)
Causes the computer to say the words indicated by A$ and B$, which must have been returned
by SPGET.

MYARC Extended BASIC Il

4.98.5. Program

The following program illustrates using CALL SAY with a word-string and three direct-strings.

100 CALL SPGET("HOW" X$)

110 CALL SPGET("ARE",Y$)

120 CALL SPGET("YOU",Z$)

130 CALL SAY("HELLO",X$,.Y$,,.Z9$)

199

TEXAS INSTRUMENTS
HOME COMPUTER

4.99. SCREEN Subprogram

4.99.1. Format

CALL SCREEN([foreground-color] background-color)
4.99.2. Cross Reference

COLOR, DCOLOR, GRAPHICS

4.99.3. Descri ption

The SCREEN subprogram enables you to change the screen color. The screen color is the color of the
border and the color displayed when transparent is specified as the foreground-color or background-color
of a character or pixel.

In Text Mode, SCREEN enables you to change the color of the displayed characters, as well as the color
of the screen.

Background-color is a numeric expression whose value specifies a screen color from among the 16
available colors.

In Text Mode, foreground-color is a numeric expression whose value specifies a color from among the 16
available colors, representing the foreground-color of all 256 characters.

If you specify a foreground-color and the computer is not in Text Mode, it has no effect. If the computer
is in Text Mode and you do not specify foreground-color, the foreground-color remains unchanged.

When you enter MYARC Extended BASIC 11, the background-color is cyan and the foreground-color is
black. When your program ends (either normally or because of an error), stops at a breakpoint, or
changes graphics mode, the default colors are restored.

The codes for the available colors are listed in Appendix F.

4.99.4. Examples

100 CALL SCREEN(8)
Changes the screen to cyan, which is the standard screen color.

100 CALL SCREEN(2)
Changes the screen to black.

MYARC Extended BASIC Il

4.99.5. Program

The following program uses CALL SCREEN with CALL VCHAR and PRINT in the Text Mode to change
the color of a character.

100 CALL CLEAR

110 CALL GRAPHICS(2)

120 CALL VCHAR(12,12,33,3)

130 CALL SCREEN(5,16)

140 PRINT "DARK BLUE SCREEN WITH WHITE LETTERS"
150 GOTO 150

(Press CLEAR to stop the program.)

Line 130 changes the screen to dark blue and the characters to white.

201

TEXAS INSTRUMENTS
HOME COMPUTER

4.100. SEGS$ function — Strin g Segment

4.100.1. Format

SEG$(string-expression , Start-position , length)

4.100.2. Type

String

4.100.3. Purpose

The SEG$ function returns a specified substring (segment of a string).

The string-expression specifies the string of which you want to specify a substring. If you use a string
constant, it must be enclosed in quotation marks.

The start-position is a numeric expression whose value specifies the character position in the
string-expression where the substring begins. The value of the start-position must be greater than zero.

The length is a numeric expression whose value specifies the length of the substring.

If the start-position is greater than the length of the string-expression, or if the length is zero, SEG$
returns a null string.

If the specified length is greater than the remaining length of the string-expression (starting from the
specified start-position), SEG$ returns a substring consisting of all characters in the string-expression
starting from the start-position to the end of the string-expression.

4.100.4. Examples

100 X$=SEG$("FIRSTNAME LASTNAME",1,9)
Sets X$ equal to FIRSTNAME.

100 Y$=SEG$("FIRSTNAME LASTNAME",11,8)
Sets Y$ equal to LASTNAME.

100 Z$=SEG3$("FIRSTNAME LASTNAME",10,1)
Sets Z$ equal to " ".

100 PRINT SEG$(A$,B,C)
Prints the substring of A$ starting at the character at position B and extending for C characters.

MYARC Extended BASIC Il

4.101. SGN function — Si gnum (Sign)

4.101.1. Format

SGN(numeric-expression)

4.101.2. Type

DEFINT

4.101.3. Descri ption

The SGN function returns a number indicating the algebraic sign of the value of the numeric-expression.
If the value of the numeric-expression is negative, SGN returns a -1.

If the value of the numeric-expression is zero, SGN returns a 0.

If the value of the numeric-expression is positive, SGN returns a +1.

4.101.4. Examples

100 IF SGN(X2)=1 THEN 300 ELSE 400
Transfers control to line 300 if X2 is positive and to line 400 if X2 is zero or negative.

100 ON SGN(X)+2 GOTO 200,300,400
Transfers control to line 200 if X is negative, line 300 if X is zero, and line 400 if X is positive.

203

TEXAS INSTRUMENTS
HOME COMPUTER

4.102. SIN function — Sine

4.102.1. Format

SIN(numeric-expression)
4.102.2. Type

REAL

4.102.3. Cross Reference
ATN, COS, TAN

4.102.4. Descri ption

The SIN function returns the sine of the angle whose measurement in radians is the value of the
numeric-expression.

The value of the numeric-expression cannot be less than -1.5707963267944K10 or greater than
1.5707963267944K10.

To convert the measure of an angle from degrees to radians, multiply by pi/180.
4.102.5. Program

The following program gives the sine for each of several angles.

100 A=.5235987755982
110 B=30

120 C=45*P1/180

130 PRINT SIN(A);SIN(B)
140 PRINT SIN(B*P1/180)
150 PRINT SIN(C)

RUN

5 -.9880316241

5

7071067812

MYARC Extended BASIC Il

4.103. SOUND sub program

4.103.1. Format

CALL SOUND(duration , frequencyl , volumel [, frequency2 , volumeZ]
[, frequency3 , volume3][, frequency4 , volume4])

4.103.2. Descri ption
The SOUND subprogram enables you to instruct the computer to produce musical tones or noise.

The computer contains three music generators and one noise generator, enabling you to create up to four
different sounds at once. You can specify the frequency and volume of each sound independently.

Duration is a numeric expression whose absolute value specifies the length of the sound in milliseconds
(thousandths of seconds). Duration can have an absolute value from 1 to 4250. (A value of 1000 will

produce a sound for one second.)

The actual duration produced by the computer may vary by as much as one sixtieth (1/60) of a second
from the value you specify.

You can enter only one duration, which applies to all specified sounds (music and noise).

Frequency is anumeric expression that has different meanings depending on whether you use it to specify
one of the music generators or the noise generator.

You must enter at least one frequency.

The frequency of a music generator specifies the frequency of the tone in Hertz (cycles per second). The
acceptable values range from 110 to 44733; the upper limit exceeds the range of human hearing.

The actual frequency produced by the computer may vary by as much as ten percent from the value you
specify.

See Appendix C for the frequencies of some commonly used tones.

205

TEXAS INSTRUMENTS
HOME COMPUTER

The frequency of the noise generator has a value from -1 to -8, specifying the type of noise produced.

The frequencies from -1 to -3 produce different types of periodic noise. A frequency of -4 produces a
periodic noise that varies depending on the frequency value of the third music generator.

The frequencies from -5 to -7 produce different types of white noise. A frequency of -8 produces a white
noise that varies depending on the frequency value of the third music generator.

Volume is a numeric expression whose value is inversely proportional to the loudness of the sound.
You must enter at least one volume.
The volume can be from 0 to 30. Zero is the maximum volume and 30 is silence.

If you call SOUND while the computer is still producing the tones specified in a previous call to the
SOUND subprogram, the result depends on the algebraic sign of the duration of the previous call to
SOUND. If the duration was positive, the new sound does not begin until the old sound is complete. If
the duration was negative, the new sound begins immediately, interrupting the old sound.

4.103.3. Examples

100 CALL SOUND(1000,110,0)
Plays A below low C loudly for one second.

100 CALL SOUND(500,110,0,131,0,196,3)
Plays A below low C and low C loudly, and G below C not as loudly, all for half a second.

100 CALL SOUND(4250,-8,0)
Plays loud white noise for 4.250 seconds.

100 CALL SOUND(DUR,TONE,VOL)
Plays the tone indicated by TONE for a duration indicated by DUR, at a volume indicated by
VOL.

4.103.4. Program

The following program plays the 13 notes of the first octave that is available on the computer.

100 X=27(1/12)

110 FOR A=1 TO 13

120 CALL SOUND(100,110*X"A,0)
130 NEXT A

MYARC Extended BASIC Il

4.104. SPGET sub program — Get S peech

4.104.1. Format

CALL SPGET(word-string , string-variable [,--])
4.104.2. Cross Reference

SAY

4.104.3. Descri ption

The SPGET subprogram enables you to assign the computer's internal representation of a speech word
to a variable.

SPGET is especially useful if you want to add a suffix to a word in the computer's resident vocabulary.

Word-string is a string expression whose value is any of the words or phrases in the computer's resident
vocabulary. If you use a string constant, you must enclose it in quotes.

The computer substitutes "UHOH" for a word-string not in the vocabulary.
A speech phrase (more than one word) must be enclosed in pound signs (#).
See Appendix H for a list of the computer's resident vocabulary.

The internal representation of the word-string (the direct-string) is returned in the string-variable. See
Appendix I for information on adding suffixes to direct-strings.

You can specify multiple word-strings and direct-strings by alternating them.
4.104.4. Program

The following program illustrates using CALL SPGET.

100 CALL SPGET("TEXAS INSTRUMENTS",X$)
110 CALL SPGET("COMPUTER",Y$)
120 CALL SAY('l AM A", X$,,Y$)

207

TEXAS INSTRUMENTS
HOME COMPUTER

4.105. SPRITE subprogram

4.105.1. Format

CALL SPRITE(# sprite-number , character-code , foreground-color ,
pixel-row | pixel-column [, vertical-velocity , horizontal-velocity 1L---D

4.105.2. Cross Reference

CHAR, COINC, COLOR, DELSPRITE, DISTANCE, GRAPHICS, LOCATE, MAGNIFY, MOTION,
PATTERN, POSITION, SCREEN

4.,105.3. Descri ption
The SPRITE subprogram enables you to create sprites.

Sprites are graphics that can be assigned any valid color and placed anywhere on the screen. Sprites treat
the screen as a grid 256 pixels high and 256 pixels wide. However, only the first 192 pixels are visible on
the screen.

You can create up to 32 sprites in all modes except Text Mode, which does not allow sprites (the SPRITE
subprogram has no effect in Text Mode).

In Pattern Mode, sprites can be set in motion in any direction at a variety of speeds. A sprite continues
its motion until it is specifically changed by the program or until program execution stops. Because
sprites move from pixel to pixel, their motion can be smoother than that of characters, which can be
moved only one character position (8 pixels) at a time.

In High-Resolution Mode, sprites cannot be set in motion. If you specify a vertical or horizontal velocity,
it will be ignored.

Sprites "pass over" characters on the screen. When two or more sprites are coincident (occupying the same
screen pixel position), the sprite with the lowest sprite-number covers the other sprite(s).

At any given time, only four sprites can be on the same horizontal pixel-row. When five or more sprites
are on the same pixel-row, that row of pixels in the sprite(s) with the highest sprite-number(s) disappears.

You can use the DELSPRITE subprogram to delete one or more sprites. All sprites are deleted when your
program ends (either normally or because of an error), stops at a breakpoint, or changes graphics mode.

MYARC Extended BASIC Il

4.105.4. Sprite S pecifications

The sprite-number is a numeric expression with a value from 1 to 32. if you specify the value of a
previously defined sprite, the old sprite is replaced by the new sprite. If the old sprite had a vertical- or
horizontal-velocity and you do not specify a new velocity, the new sprite retains the old velocity.

Character-code is a numeric expression with a value from 0-255, specifying the character that defines the
sprite pattern.

If you use the MAGNIFY subprogram to change to double-sized sprites, the sprite definition includes the
character specified by the character-code and three additional characters (see MAGNIFY).

Once defined by the SPRITE subprogram, the character-code of a sprite can be changed by the
PATTERN subprogram.

The foreground-color is a numeric expression with a value from 1 to 16, specifying one of the 16 available
colors. Once defined by the SPRITE subprogram, the foreground-color of a sprite can be changed by the
COLOR subprogram.

The background-color of a sprite is always transparent.

The pixel-row and pixel-column are numeric expressions whose values specify the screen pixel position
of the pixel at the upper-left corner of the sprite.

Once defined by the SPRITE subprogram, the pixel-row and pixel-column of a sprite can be changed by
the LOCATE subprogram, and the current pixel-row and pixel column of a sprite can be ascertained by
the POSITION subprogram. Also, the distance between sprites or between a sprite and a specified screen
pixel can be ascertained by the DISTANCE subprogram, and the COINC subprogram can be used to
ascertain whether sprites are coincident with each other or with a specified screen pixel.

209

TEXAS INSTRUMENTS
HOME COMPUTER

4.105.5. Sprite Motion
Sprite motion is valid only in Pattern Mode. There is no effect in High-Resolution Mode.

The optional vertical-velocity and horizontal-velocity are numeric expressions with values from -128 to
127. If both values are zero, the sprite is stationary. The speed of a sprite is in direct linear proportion
to the absolute value of the specified velocity.

A positive vertical-velocity causes the sprite to move toward the top of the screen; a negative
vertical-velocity causes the sprite to move toward the bottom of the screen.

A positive horizontal-velocity causes the sprite to move to the right; a negative horizontal-velocity causes
the sprite to move to the left.

If neither the vertical- nor horizontal-velocity are zero, the sprite moves at an angle, in a direction and
at a speed determined by the velocity values.

The velocity of a sprite can be changed by the MOTION subprogram.

When a moving sprite reaches an edge of the screen, it disappears. The sprite reappears in the
corresponding position at the opposite edge of the screen. The motion of a sprite may be affected by the
computer's internal processing and by input to, and output from, external devices.

4.105.6. Program

The following three programs show some possible uses of sprites.

100 CALL CLEAR
110 CALL CHAR(244,"FFFFFFFFFFFFFFFF")
120 CALL CHAR(246,"183C7EFFFF7E3C18")
130 CALL CHAR(248,"FOOFFOOFFOOFFOOF")
140 CALL SPRITE(#1,244,5,92,124 #2,248,7,1,1)
150 CALL SPRITE(#28,33,16,12,48,1,1)

160 CALL SPRITE(#15,246,14,1,1,127,-128)

170 GOTO 170

(Press CLEAR to stop program.)
Line 140 creates a dark blue sprite in the center of the screen and a red striped sprite in the upper-right
corner of the screen. Line 150 creates a white sprite near the upper-left corner of the screen and starts

it moving slowly at a 45-degree angle down and to the right. The sprite is an exclamation point.

Line 160 creates a dark red sprite at the upper-right corner of the screen and starts it moving very fast
at a 45 degree angle down and to the left.

MYARC Extended BASIC Il

The following program makes a rather spectacular use of sprites.

100 CALL CLEAR

110 CALL CHAR(244,"000808IC7FIC0808")

120 RANDOMIZE

130 CALL SCREEN(2)

140 FOR A=1TO 28

150 CALL SPRITE(#A,244,INT(A/3)+3,92,124, A*INT(RND*4.5)
-2.25+A/2*SGN(RND-.5), AINT(RND*4.5)-2.25+A/2*SGN(RND-.5))
160 NEXT A

170 GOTO 140

(Press CLEAR to stop the program.)
Line 110 defines character 244.

Line 150 defines the sprites, 28 in all. The sprite-number is the current value of A. The character-value
is 244. The sprite-color is INT(A/3)+3. The starting dot-row and dot-column are 92 and 124, the center
of the screen. The row- and column-velocities are chosen randomly using the value of
A*INT(RND*4.5)-2.25+A/2*SGN(RND-.5).

Line 170 causes the sequence to repeat.

The following program uses all the subprogram that relate to sprites except for COLOR. They are CHAR,
COINC, DELSPRITE, LOCATE, MAGNIFY, MOTION, PATTERN, POSITION, and SPRITE.

The program creates two double-sized magnified sprites in the shapes of two people walking along a floor.
There is a barrier that one of them passes through and the other jumps through. The one that jumps
through goes a little faster after each jump, eventually catching the other one. When this happens, they
each become double-sized, unmagnified sprites and continue walking. When they meet for the second
time, the one that has been going faster disappears and the other continues walking.

100 CALL CLEAR

110 S1$="0103030103030303030303030303030380C
0C080COCOCOCOCOCOCOCOCOCOCOE011"

120 S2$="0103030103070FIBIB030303060COCOES0C
0C080COEOFOD8CCCOC0C060303038"

130 COUNT=0

140 CALL CHAR(244,51$)

150 CALL CHAR(248,52$)

160 CALL SCREEN(14)

170 CALL COLOR(14,13,13)

180 FOR A=19 TO 24

190 CALL HCHAR(A,1,136,32)

200 NEXT A

210 CALL COLOR(13,15,15)

220 CALL VCHAR(14,22,128,6)

230 CALL VCHAR(14,23,128,6)

211

TEXAS INSTRUMENTS
HOME COMPUTER

240 CALL VCHAR(14,24,128,6)

250 CALL SPRITE(#1,244,5,113,129 #2,244,7,113,9)
260 CALL MAGNIFY(4)

270 XDIR=4

280 PAT=2

290 CALL MOTION(#1,0,XDIR,#2,0,4)

300 CALL PATTERN(#1,246+PAT #2,246-PAT)
310 PAT=-PAT

320 CALL COINC(ALL,CO)

330 IF CO>0 THEN 370

340 CALL POSITION(#1,YPOS1,XPOS1)

350 IF XPOS1>136 AND XPOS1<192 THEN 470
360 GOTO 300

370 REM COINCIDENCE

380 CALL MOTION(#1,0,0#2,0,0)

390 CALL PATTERN(#1,244 #2,244)

400 IF COUNT>0 THEN 540

410 COUNT=COUNT+1

420 CALL POSITION(#1,YPOS1,XPOS1,#2,YPOS2,XPOS2)
430 CALL MAGNIFY(3)

440 CALL LOCATE(#1,YPOS1+16,XPOS1+8#2,YPOS2+16,XPOS2)
450 CALL MOTION(#1,0,XDIR,#2,0,4)

460 GOTO 340

470 REM #1 HIT WALL

480 CALL MOTION(#1,0,0)

490 CALL POSITION(#1,YPOS1,XPOS1)

500 CALL LOCATE(#1,YPOS1,193)

510 XDIR=XDIR+1

520 CALL MOTION(#1,0,XDIR)

530 GOTO 300

540 REM SECOND COINCIDENCE

550 FOR DELAY=1 TO 1000 :: NEXT DELAY
560 CALL MOTION(#2,0,4)

570 CALL DELSPRITE(#1)

580 FOR STEP1=1 TO 20

590 CALL PATTERN(#2,248)

600 FOR DELAY=1 TO 40 :: NEXT DELAY

610 CALL PATTERN(#2,244)

620 FOR DELAY=1 TO 40 :: NEXT DELAY

630 NEXT STEP1

640 CALL CLEAR

Lines 110, 120, 140, 150, 250, and 260 define the sprites.
Line 130 sets the meeting counter to zero.
Lines 170 through 200 build the floor.

Lines 210 through 240 build the barrier.

MYARC Extended BASIC Il

Line 270 sets the starting speed of the sprite that will speed up.
Line 290 sets the sprites in motion.
Line 300 creates the illusion of walking.

Line 320 checks to see if the sprites have met. Line 330 transfers control if the sprites have met. Lines
340 and 350 check to see if the sprite has reached the barrier and transfer control if it has.

Line 360 loops back to continue the walk. Lines 370 through 460 handle the sprites running into each
other. Lines 380 and 390 stop them.

Line 400 checks to see if it is the first meeting. Line 410 increments the meeting counter. Line 420 finds
the sprites position.

Line 430 makes them smaller. Line 440 puts them on the floor and moves the fast one slightly ahead.
Line 450 starts them moving again.

Lines 470 through 530 handle the fast sprite jumping through the barrier. Line 480 stops it. Line 490
finds where it is.

Line 500 puts it at the new location beyond the barrier. Lines 510 and 520 start it moving again, a little
faster.

Lines 540 through 640 handle the second meeting.
Line 560 starts the slow sprite moving. Line 570 deletes the fast sprite.

Lines 580 through 630 make the slow sprite walk 20 steps.

213

TEXAS INSTRUMENTS
HOME COMPUTER

4.106. SQR function — S quare Root

4.106.1. Format

SQR(numeric-expression)

4.106.2. Type

REAL

4.106.3. Descri ption

The SQR function returns the positive square root of the value of the numeric-expression.
The value of the numeric-expression cannot be negative.

4.106.4. Examples

100 PRINT SQR(4)
Prints 2.

100 X=SQR(2.57E5)
Sets X equal to the square root of 257,000, which is 506.0516742255.

MYARC Extended BASIC Il

4.107. STOP

4.107.1. Format
STOP

4.107.2. Cross Reference

END

4.107.3. Descri ption

The STOP statement stops the execution of your program.

When your computer encounters a STOP statement, the computer performs the following operations:

L] It closes all open files.

L] If the computer is in Pattern or Text Mode, it restores the default character definitions of all
characters.

L] If the computer is in High-Resolution Mode, it restores the default character definitions of all
characters and restores the default graphics mode (Pattern) and margin settings (3, 30, 1, 24)

| Restores the default foreground color (black) and background color (transparent) to all
characters.

L] Restores the default screen color (cyan).

L] Deletes all sprites.

u Resets the sprite magnification level to 1.

The graphics colors (see DCOLOR) and current position (see DRAWTO) are not affected. If the computer
is in Pattern or Text Mode the graphics mode and margin settings remain unchanged.

A STOP statement is not necessary to stop your program; the program automatically stops after the
highest-numbered line is executed.

STOP is frequently used before a subprogram that follows the main portion of a program, to ensure that
the subprogram is not executed after the execution of the highest-numbered line in the main program.

STOP can be used interchangeably with the END statement, except that you cannot use STOP to end
a subprogram.

215

TEXAS INSTRUMENTS
HOME COMPUTER

4.107.4. Program

The following program illustrates the use of the STOP statement. The program adds the numbers from
1 to 100.

100 CALL CLEAR

110 TOT=0

120 NUMB=1

130 TOT=TOT+NUMB

140 NUMB=NUMB+1

150 IF NUMB>100 THEN PRINT TOT::STOP
160 GOTO 130

MYARC Extended BASIC Il

4.108. STR$ function— Strin g-Number

4.108.1. Format

STR$(numeric-expression)

4.108.2. Type

String

4.108.3. Cross Reference

VAL

4.108.4. Descri ption

The STR$ function returns the string representation of the value of the numeric-expression.

STR$ enables you to use the string representation of the numeric-expression with an instruction that
requires a string expression as a parameter.

STRS$ is the inverse of the VAL function.
STR$ removes leading and trailing spaces.

4.108.5. Examples

100 NUM$=STR$(78.6)
Sets NUMS$ equal to "78.6".

100 LL$=STR$(3EI5)
Sets LL$ equal to 113.E+15".

100 X$=STR$(A*4)
Sets X$ equal to a string representation of whatever value is obtained when A is multiplied by
4. For instance, if A is equal to -8, X$ is set equal to "-32".

217

TEXAS INSTRUMENTS
HOME COMPUTER

4.109. SUB — Sub program

4.109.1. Format

SUB subprogram-name [([data-type | parameter [,...])]
4.109.2. Cross Reference

CALL, SUBEND, SUBEXIT

4.109.3. Descri ption

The SUB statement is the first statement in a subprogram.

You can use a subprogram to separate a group of statements from the main program. Subprogram are
generally used to perform a specific operation several times in the same program or in different programs,
or to isolate variables that are specific to the subprogram.

Subprogram are accessed from your main program with a CALL statement. The subprogram-name in the
SUB statement is the same name that you use in the CALL statement that transfers control to the
subprogram.

The maximum length of a subprogram-name is 15 characters.

A user-written subprogram may have the same subprogram-name as a built-in subprogram. In such a
case, a CALL statement will access the user-written subprogram instead of the built-in one.

You can use parameters to pass values to a subprogram. Parameters must be valid names of variables or
arrays.

If a parameter is numeric, you can optionally specify its data-type (DEFINT or REAL). Numeric
parameters are considered to be REAL unless you specifically declare them as DEFINT in the parameter
list. A DEFINT ALL, statement in your main program or in the subprogram itself does not affect the
data-type of parameters.

SUBEND must he the last statement executed in a subprogram. When the computer encounters a
SUBEND or a SUBEXIT statement in a subprogram, program control returns to the statement
immediately following the CALL statement that called the subprogram.

It is recommended that you do not use any statement other than SUBEND or SUBEXIT to leave a
subprogram. If you use another statement to leave a subprogram you may still be using variables local
to the subprogram, which may cause unexpected results.

Subprogram must have higher line numbers than any part of your main program. A SUB statement
cannot be part of an IF THEN statement.

218

MYARC Extended BASIC Il

4.109.4. Subprogram Variables

The variables used in a subprogram (other than those used as parameters) are local to the subprogram,;
that is, even if a variable in your main program has the same name as a variable in a subprogram, the
value of that variable outside the subprogram is not affected by changes to its value in the subprogram.
If a subprogram is called more than once, any local variables used in the subprogram retain their values
from one call to the next.

Numeric variables used in a subprogram are considered to be REAL unless you specifically declare them
as DEFINT. A DEFINT ALL statement in your main program does not affect the data-type of numeric
variables in a subprogram.

A DEFINT ALL statement in a subprogram does not affect the data-type of numeric variables in your
main program or in any other subprogram.

4.109.5. Parameters

When your program executes a subprogram beginning with a SUB statement with parameters, the
parameter values (constants or variables) are passed from the parameter-list of the CALL statement to
the subprogram. The parameter-list in the CALL statement must contain the same number of parameters
as the SUB statement. Values are passed in the order in which they are listed.

A numeric parameter must be passed a numeric value. A string parameter must be passed a string value.

An array parameter must be passed an array. A string-array parameter must be passed a string array;
a DEFINT-array parameter must be passed a DEFINT array; a REAL-array parameter must be passed
a REAL array.

To pass an entire array as one parameter, follow the array name with left and right parentheses. If the
array has more than one dimension, place one comma between the parentheses for each additional
dimension.

219

TEXAS INSTRUMENTS
HOME COMPUTER

4.109.6. Passin g Parameters b y Reference and Value

When a subprogram manipulates the value of a parameter passed to it, the new parameter value may or
may not be passed back to the main program. When a parameter is passed to a subprogram "by reference",
the new value is passed back to the main program after the subprogram has executed.

When a parameter is passed to a subprogram "by value", the new value is not passed back to the main
program.

Variables, array elements, and arrays are normally passed by reference. However, if a numeric variable
or array element is of a different data-type in the main program than it is in the subprogram (DEFINT
vs. REAL), the parameter is passed by value. Note that if you pass a DEFINT variable to a numeric
parameter, that subprogram parameter is considered to be REAL unless you specifically declare it as a
DEFINT by using the data-type option in the parameter list of the SUB statement. Remember that if you
want to pass a DEFINT by reference, you must declare the subprogram parameter as a DEFINT.

To specify that a variable or array element is to be passed by value rather than by reference, enclose it
in parentheses in the CALL statement's parameter-list. Note that this option is not available for arrays.

If you use an expression as a parameter, it is evaluated and passed by value.

4.109.7. Examples

100 SUB MENU
Marks the beginning of a subprogram. No parameters are passed or returned.

100 SUB MENU(COUNT,CHOICE)
Marks the beginning of a subprogram. The variables COUNT and CHOICE may be used and/or
have their values changed in the subprogram and returned to the variables in the same position
in the calling statement.

100 SUB PAYCHECK(DATE,Q,SSN,PAYRATE,TABLE(,))
Marks the beginning of a subprogram. The variables DATE, Q, SSN, PAYRATE, and the array
TABLE with two dimensions may be used and/or have their values changed in the subprogram
and returned to the variables in the same position in the calling statement.

MYARC Extended BASIC Il

4.109.8. Program

The following program illustrates the use of SUB. The subprogram MENU had been previously saved
with the MERGE option. It prints a menu and requests a choice. The main program tells the subprogram
how many choices there are and what the choices are. It then uses the choice made in the subprogram
to determine what program to run.

100 CALL MENU(5,R)

110 ON R GOTO 12(,130,140,150,160)

120 RUN "DSK1.PAYABLES"

130 RUN "DSK1.RECEIVE"

140 RUN "DSK1.PAYROLL"

150 RUN "DSK1.INVENTORY"

160 RUN "DSK1.LEDGER"

170 DATA ACCOUNTS PAYABLE,ACCOUNTS RECEIVABLE,PAYROLL,INVENTORY,GENERAL LEDGER

Beginning of subprogram MENU.

Note that this R is not the same as the R used in lines 100 and 110 in the main program.

10000 SUB MENU(COUNT,CHOICE)

10010 CALL CLEAR

10020 IF COUNT>22 THEN PRINT "TOO MANY ITEMS" :: CHOICE=0 :: SUBEXIT
10030 RESTORE

10040 FOR R=1 TO COUNT

10050 READ TEMP$

10060 TEMP$=SEG$(TEMP$,1,25)

10070 DISPLAY AT(R,1):R;TEMP$

10080 NEXT R

10090 DISPLAY AT(R+1,1):"YOUR CHOICE: I"

10100 ACCEPT AT(R+1,14)BEEP VALIDATE(DIGIT)SIZE(-2):CHOICE
10110 IF CHOICE>COUNT OR CHOICE<1 THEN 10100

10120 SUBEND

221

TEXAS INSTRUMENTS
HOME COMPUTER

4,110. SUBEND — Sub program End

4.110.1. Format

SUBEND

4.110.2. Cross Reference

SUB, SUBEXIT

4.110.3. Descri ption

The SUBEND statement marks the end of a subprogram.

SUBEND must be the last statement executed in a subprogram. When the computer encounters a
SUBEND statement in a subprogram, program control returns to the statement immediately following
the CALL statement that called the subprogram.

It is recommended that you do not use any statement other than SUBEND or SUBEXIT to leave a
subprogram. If you use another statement to leave a subprogram you may still be using variables local
to the subprogram, which may cause unexpected results.

A SUBEND statement cannot be part of an IF THEN statement.

The only statements that can immediately follow a SUBEND statement are REM, END, or the SUB
statement for the next subprogram.

MYARC Extended BASIC Il

4.111. SUBEXIT — Sub program Exit

4.111.1. Format
SUBEXIT

4.111.2. Cross Reference
SUB, SUBEND
4.111.3. Descri ption

The SUBEXIT statement enables you to leave a subprogram before the computer executes the SUBEND
statement that ends the subprogram.

SUBEXIT enables you to have more than one exit from a subprogram.

When the computer encounters a SUBEXIT statement in a subprogram, program control returns to the
statement immediately following the CALL statement that called the subprogram.

It is recommended that you do not use any statement other than SUBEND or SUBEXIT to leave a
subprogram. If you use another statement to leave a subprogram you may still be using variables local
to the subprogram, which may cause unexpected results.

223

TEXAS INSTRUMENTS
HOME COMPUTER

4.112. TAB function — Tabulate

4.112.1. Format

TAB(numeric-expression)
4.112.2. Cross Reference
DISPLAY, PRINT

4.112.3. Descri ption

The TAB function specifies the starting position of the next item to be printed by a PRINT or DISPLAY
instruction.

The numeric-expression specifies the starting position of the next print item in a print-list of a PRINT
or DISPLAY instruction.

If the value of the numeric-expression is not an integer, it is rounded to the nearest integer. If the value
of the numeric-expression is less than 1, it is replaced by 1.

If the value of the numeric-expression is greater than the record length of the screen or device, it is
repeatedly reduced by the record length until it is less than or equal to the record length. The record
length of the screen is the width of the screen window defined by the margins. For more information
about the record length of a particular device, refer to the owner's manual that comes with that device.

TAB is relative to the left side of the screen, not the current screen window.

Because the TAB function itself is treated as a separate print item, it must be preceded and/or followed
by a print separator (usually a semicolon), unless it is the only item in the print-list.

If the number of characters already printed in the current record is greater than or equal to the position
indicated by the value of the numeric-expression, the print item following the TAB is printed in the next
record, beginning in the position specified by the value of the numeric-expression.

TAB can be used to print to a device or file only if the device or file has been opened in DISPLAY format.

TAB cannot be used with PRINT USING or DISPLAY USING.

MYARC Extended BASIC Il

4.112.4. Examples

100 PRINT TAB(12);35
Prints the number 35 at the twelfth position.

100 PRINT 356;TAB(18);"NAME"
Prints 356 at the beginning of the line and NAME at the eighteenth position of the line.

100 PRINT "ABCDEFGHIJKLM"; TAB(5);"NOP"

Prints ABCDEFGHIJKLM at the beginning of the line and NOP at the fifth position of the next
line.

100 DISPLAY AT(12,1):"NAME";TAB(15);"ADDRESS"

Displays NAME at the beginning of the twelfth line on the screen and ADDRESS at the fifteenth
position on the twelfth line of the screen.

225

TEXAS INSTRUMENTS
HOME COMPUTER

4.113. TAN function — Tan gent
4.113.1. Format
TAN(numeric-expression)

4.113.2. Type

REAL

4.113.3. Cross Reference

ATN, COS, SIN

4.113.4. Descri ption

The TAN function returns the tangent of the angle whose measurement in radians is the value of the
numeric-expression.

The numeric-expression cannot beless than -1.5707963269514E10 or greater than 1.5707963266374E10.
To convert the measure to radians, multiply by pi/180.
4.113.5. Program

The following program gives the tangent for each of several angles.

100 A=.7853981633973
110 B=26.565051177

120 C=45*P1/180

130 PRINT TAN(A);TAN(B)
140 PRINT TAN(B*PI/180)
150 PRINT TAN(C)

RUN

1.7.17470553

5
1
1

MYARC Extended BASIC Il

4.114. TERMCHAR function — Termination Character

4.114.1. Format
TERMCHAR

4.114.2. Type

DEFINT

4.114.3. Cross Reference
ACCEPT, INPUT, LINPUT
4.114.4. Descri ption

The TERMCHAR function returns the character code of the key pressed to exit from the previously
executed INPUT, ACCEPT, or LINPUT statement.

In a program, the value returned by TERMCHAR depends on the key pressed to exit from the last
instruction that accepted input from the keyboard.

VALUE RETURNED KEY

1 AID
2 CLEAR
10 DOWN ARROW
11 UP ARROW
12 PROC'D
13 ENTER
14 BEGIN
15 BACK

If you use TERMCHAR as part of a command (unless it is preceded by ACCEPT, INPUT, or LINPUT),
the value returned depends on the key pressed to enter the command (ENTER, UP ARROW, or DOWN
ARROW).

Note that pressing CLEAR during keyboard input normally causes a break in the program. However, if
your program includes an ON BREAK NEXT statement, you can use CLEAR to exit from an input field.

227

TEXAS INSTRUMENTS
HOME COMPUTER

4.114.5. Program

The following program illustrates a use of TERMCHAR. The program displays name, address, and city,
state, and zip code information entered from the keyboard. Line 160 enables you to correct errors in
previously entered lines by pressing UP ARROW. This returns the cursor to the beginning of the line that
immediately precedes the one from which UP ARROW was entered.

100 CALL CLEAR

110 R=5%C=12

120 DISPLAY AT(R,C-10):"NAME

130 DISPLAY AT(R+1,C-10):"ADDRESS:"

140 DISPLAY AT(R+2,C-10):"C,S,Z:"

150 ACCEPT AT(R,C)SIZE(-20):A$(R)

160 IF TERMCHAR=11 THEN R=R-1 ELSE R=R+1
170 IF R=7 THEN 150

180 DISPLAY AT(20,1):A$(5):A$(6):A$(7)

190 GOTO 110

(Press CLEAR to stop the program.)

MYARC Extended BASIC Il

4.115. TRACE

4.115.1. Format
TRACE

4.115.2. Cross Reference
UNTRACE
4.115.3. Descri ption

The TRACE instruction causes the computer to display the line number of each line in your program
before it is executed.

TRACE enables you to see the order in which the computer performs statements as it runs your program.
It is valuable as a debugging aid to help you find errors (such as unwanted infinite loops) in your
program.

You can use TRACE either as a program statement or a command.

The effect of a TRACE instruction is canceled when an UNTRACE instruction or a NEW command is
executed.

4.115.4. Programs

The following program displays a trace of the order of execution of the program lines.

100 FOR J=1TO 3
110 PRINT "WORD"
120 NEXT J

TRACE

<100><110> WORD
<120><110> WORD
<120><110> WORD
<120>

229

TEXAS INSTRUMENTS
HOME COMPUTER

4.116. UNBREAK

4.116.1. Format

UNBREAK [line-number-list]

4.116.2. Cross Reference

BREAK

4.116.3. Descri ption

The UNBREAK instruction removes a breakpoint from each program statement you specify.
You can use UNBREAK as either a program statement or a command.

The line-number-list consists of one or more line numbers separated by commas. When an UNBREAK
instruction is executed, breakpoints are removed from the specified program lines.

Ifyou do not include a line-number-list, UNBREAK removes all breakpoints, except for a breakpoint that
occurs when a BREAK statement with no line-numaber-list is encountered in a program.

If the line-number-list includes an invalid line number (0 or a value greater than 32767), the message BAD
LINE NUMBERis displayed. If the line-number-list includes a fractional or negative line number, the
message SYNTAX ERRORs displayed. In both cases, the UNBREAK instruction is ignored; that is,
breakpoints are not removed even at valid line numbers in the line-number-list. If you were entering
UNBREAK as a program statement, it is not entered into your program.

If the line-number-list includes a line number that is valid (1-32767) but is not the number of a line in
your program, or a fractional number greater than 1, the message

* WARNING
LINE NOT FOUND

is displayed. (If you were entering UNBREAK as a program statement, the line-number is included in
the warning message.) A breakpoint is, however, removed from any valid line in the line-number-list that
precedes the line number that caused the warning.

MYARC Extended BASIC Il

4.116.4. Examples

UNBREAK
450 UNBREAK

Removes all breakpoints (except those resulting from a BREAK statement with no
line-number-list).

UNBREAK 100,130
350 UNBREAK 100,130

Removes the breakpoints from lines 100 and 130.

231

TEXAS INSTRUMENTS
HOME COMPUTER

4.117. UNTRACE

4.117.1. Format
UNTRACE

4.117.2. Cross Reference

TRACE

4,117.3. Descri ption

The UNTRACE instruction cancels the effect of a TRACE instruction.
You can use UNTRACE as either a program statement or a command.

4.117.4. Examples

UNTRACE
450 UNTRACE

Removes the effect of TRACE.

MYARC Extended BASIC Il

4.118. VAL function — Value

4.118.1. Format

VAL(string-expression)

4.118.2. Type

REAL

4.118.3. Cross Reference

STR$

4,118.4. Descri ption

The VAL function returns the numeric value of the string-expression.

VAL enables you to use the numeric value of the string-expression with an instruction that requires a
numeric expression as a parameter.

VAL is the inverse of the STR$ function.

The string-expression must be a valid representation of a number. The length of the siring-expression
must be greater than 0 and less than 255. If you use a string constant, it must be enclosed in quotation
marks.

4.118.5. Example

100 NUMB=VAL("78.6")
110 PRINT NUMB

Prints 78.6.

100 LL=VAL("3E15")
Sets LL equal to 3E+15, or 315.

233

TEXAS INSTRUMENTS
HOME COMPUTER

4.119. VALHEX function — Value of Hexadecimal Number

4.119.1. Format

VALHEX(string-expression)

4.119.2. Type

DEFINT

4.119.3. Descri ption

VALHEX returns the numeric value of the hexadecimal number represented by the string-expression.

The string-expression specifies the hexadecimal (base 16) number to be converted to a decimal (base 10)
number. If you use a string constant, it must be enclosed in quotation marks.

The string-expression must contain only valid hexadecimal digits (0-9,A-F). Alphabetic hexadecimal digits
must be upper-case letters. VALHEX can convert a hexadecimal number from one to four digits long. If
the length of the string-expression is greater than four, VALHEX uses only the last four characters.

VALHEX returns an integer greater than or equal to -32768 (hexadecimal 8000) and less than or equal
to 32767 (hexadecimal 7FFF).

4,119.4. Examples

100 A=VALHEX("400A")
Sets A equal to 16394.

100 PRINT VALHEX("8200")
Prints -32256.

MYARC Extended BASIC Il

4,120. VCHAR sub program — Vertical Character

4.120.1. Format

CALL VCHAR(row, column , character-code [, number-of-repetitions)

4.120.2. Cross Reference

DCOLOR, GCHAR, GRAPHICS, HCHAR

4.120.3. Descri ption

The VCHAR subprogram enables you to place a character on the screen and repeat it horizontally.

Row and column are numeric expressions whose values specify the position on the screen where the
character is displayed.

The value of row must be greater than or equal to 1, row must be less than or equal to 24.

The value of column must be greater than or equal to 1. In Pattern or High-Resolution Mode, the column
must be less than or equal to 32; in Text Mode, column must less than or equal to 40.

VCHAR is not affected by margin settings.

Character-code is a numeric expression with a value from 0-255, specifying the number of the character.
See Appendix B for a list of ASCII character codes.

The optional number-of-repetitions is a numeric expression whose value specifies the number of times the
character is repeated horizontally. If the repetitions extend past the end of a column, they continue from
the first character of the next column. If the repetitions extend past the end of the last column, they
continue from the first character of the first column.

If you use VCHAR to display a character on the screen, and then later use CHAR, COLOR, or DCOLOR
to change the appearance of that character, the result depends on the graphics mode:

L] In Pattern and Text Modes, the displayed character changes to the newly specified pattern and/or
color(s).
L] In High-Resolution Mode, the displayed character remains unchanged.

235

TEXAS INSTRUMENTS
HOME COMPUTER

4.120.4. Examples

100 CALL VCHAR(12,16,33)
Places character 33 (an exclamation point) in row 12, column 16.

100 CALL VCHAR(1,1,ASC("!"),768)

Places an exclamation point in row 1, column 1, and repeats it 768 times which fills the screen
in Pattern Mode.

100 CALL VCHAR(R,C,K,T)

Places the character with an ASCII code specified by the value of K in row R column C, and
repeats it T times.

MYARC Extended BASIC Il

4,121. VERSION sub program

4.121.1. Format

CALL VERSION(numeric-variable)

4,121.2. Descri ption

The VERSION subprogram returns a value indicating the version of BASIC being used.

In MYARC Extended BASIC II, VERSION returns a value of 200 to the numeric-variable you specify.

4.,121.3. Example

100 CALL VERSION(V)
Sets V equal to 200.

237

TEXAS INSTRUMENTS
HOME COMPUTER

4.122. WRITE sub program

4.122.1. Format

CALL WRITE(type , row,column , string-expression
[, row2, column2 , string-expression2 [,---1D

4.122.2. Cross Reference
GRAPHICS, HCHAR, MARGIN, VCHAR
4.122.3. Descri ption

The WRITE subprogram enables you to display strings on the screen in High-Resolution Mode. The
string-expression may be a constant or a variable.

Type is a numeric-expression whose value specifies the action taken by the WRITE subprogram.

TYPE ACTION
0,1 Displays the string-expression horizontally within the screen boundaries. Margins are
disregarded. Display begins at the specified row and column.

2 Displays the string-expression vertically within the screen boundaries. Margins are
disregarded. Display begins at the specified row and column.

If the string to be displayed will not fit within the screen, the string will wrap around on the screen.

For WRITE, the screen is considered to be 24 rows by 32 columns. As in HCHAR and VCHAR, blocks of
pixels 8x8 are the unit of measurement not single pixels as in most other High-Resolution subprogram.

Row must have a value from 1 to 24, column must have a value from 1 to 32.

WRITE can only be used in High-Resolution Mode. An error results if you use WRITE in Pattern or Text
Modes.

4,122.4. Example

100 CALL GRAPHICS(3)
110 CALL WRITE(0,1,1,"HELLO, HOW ARE YOU")

Displays "HELLO, HOW ARE YOU", starting at row 1, column 1, relative to the upper-left corner
of the screen.

MYARC Extended BASIC Il

5. APPENDICES

The following appendices give useful information for utilization with MYARC Extended BASIC II.
Appendix A: List of Commands, Statements, and Functions
Appendix B: ASCII Codes

Appendix C: Musical Tone Frequencies

Appendix D: Character Sets

Appendix E: Pattern-Identifier Conversion Table

Appendix F: Color Codes

Appendix G: Mathematical Functions

Appendix H: List of Speech Words

Appendix I: Adding Suffixes to Speech Words

Appendix J: Error Messages

Appendix K: High-Resolution Mode (Restrictions and Conventions)

239

TEXAS INSTRUMENTS
HOME COMPUTER

Appendix A. Commands, Statements, and Functions

The following is a list of all MYARC Extended BASIC II commands, statements, and functions.
Commands are listed first; if a command can also be used as a statement, the letter "S" is listed to the
right of the command. Commands that can be abbreviated have the acceptable abbreviations underlined.
Next isalist of all MYARC Extended BASIC II statements; those that can also be used as commands have
a "C" after them.

Finally, there is a list of all MYARC Extended BASIC II functions.

MYARC Extended BASIC || COMMANDS

BREAK S MERGE SAVE

BYE NEW SIZE

CONTINUE NUMBER TRACE S
DELETE S OLD UNBREAK S
INTEGER S RESEQUENCE UNTRACE S
LIST RUN S

MYARC Extended BASIC Il

MYARC Extended BASIC || STATEMENTS

ACCEPT

CALL

CALL CHAR
CALL CHARPAT
CALL CHARSET
CALL CLEAR
CLOSE

CALL COINC
CALL COLOR
DATA

DEF

CALL DELSPRITE
DIM

DISPLAY
DISPLAY USING
CALL DISTANCE

CALL GCHAR
GOSUB
GOTO

ololololoNoNoNoNe®)

oo aaoaaad

CALL GRAPHICS
CALL HCHAR
IF THEN ELSE
IMAGE

CALL INIT
INPUT

INPUT REC
CALL JOYST
CALL KEY
[LET]

CALL LINK
LINPUT

CALL LOAD
CALL LOCATE
CALL MAGNIFY
CALL MOTION
NEXT

ON BREAK
ON ERROR
ON GOSUB
ON GOTO

ON WARNING
OPEN

MYARC Extended BASIC Il FUNCTIONS

FREESPACE
INT

LEN
LOG
MAX
MIN
PI
POS
REC
RND
RPT$

olololoNolNoNoNoNe!

CALL PEEKV
CALL POKEV
REAL

OPTION BASE
CALL PATTERN
CALL PEEK
CALL POSITION
PRINT

PRINT USING
RANDOMIZE
READ

REM

RESTORE
RETURN

CALL SAY
CALL SCREEN
CALL SOUND
CALL SPGET
CALL SPRITE
STOP

SUB

SUBEND
SUBEXIT

CALL VCHAR
CALL VERSION

SEG$

SGN

SIN

SQR

STR$

TAB

TAN
TERMCHAR
VAL
VALHEX

[OROR)]

ololoNoloNolNoNololoRoRoNoNoN@)

QQa

TEXAS INSTRUMENTS
HOME COMPUTER

Appendix B. ASCII Codes

The following predefined characters may be printed or displayed on the screen.

Ascit Ascit

Code Character Code Character
30 (cursor) 79 O

31 (edge character) 80 P

32 (space) 81 Q

33 ! (exclamation point) 82 R

34 " (quote) 83 S

35 # (number or pound sign) 84 T

36 $ (dollar) 85 U

37 % (percent) 86 A%

38 & (ampersand) 87 w

39 ' (apostrophe) 88 X

40 ((open parenthesis) 89 Y

41) (close parenthesis) 90 Z

42 * (asterisk) 91 [(open bracket)
43 + (plus) 92 \ (reverse slash)
44 , (comma) 93] (close bracket)
45 - (minus) 94 ~ (exponentiation)
46 . (period) 95 _ (underline)
47 / (slash) 96 * (grave)

48 0 97 a

49 1 98 b

50 2 99 c

51 3 100 d

52 4 101 e

53 5 102 f

54 6 103 g

55 7 104 h

56 8 105 i

57 9 106 j

58 : (colon) 107 k

59 ; (semicolon) 108 1

60 < (less than) 109 m

61 = (equals) 110 n

62 > (greater than) 111 o

63 ? (question mark) 112 p

64 @ (at sign) 113 q

65 A 114 r

66 B 115 S

67 C 116 t

68 D 117 u

MYARC Extended BASIC Il

69 E
70 F
71 G
72 H
73 I
74 dJ
75 K
76 L
M
N

118
119
120
121
122
123
124
125
126
127

N < Mg <

{ (left brace)

| (vertical bar)

} (right brace)

~ (tilde)

DEL (appears as a blank)

The following key presses may also be detected by CALL KEY.

FCTN 7 (AID)

FCTN 1 (DEL)

FCTN 2 (INS)

FCTN 8 (REDO)

FCTN 3 (ERASE)

FCTN S (LEFT ARROW)
FCTN D (RIGHT ARROW)

O© 00 IO+ WK

10
11
12
13
14
15

FCTN X (DOWN ARROW)
FCTN E (UP ARROW)
FCTN 6 (PROCD)

ENTER

FCTN 5 (BEGIN)

FCTN 9 (BACK)

243

TEXAS INSTRUMENTS
HOME COMPUTER

Appendix C. Musical Tone Fre guencies

The following table gives the frequencies (rounded to integers) of four octaves of the tempered scale (one
half step between notes). While this list does not represent the entire range of tones that the computer
can produce, it can be helpful for programming music.

FREQUENCY NOTE FREQUENCY NOTE

110 A 440 A (above middle C)
117 A#, Bb 466 A#, Bb

123 B 494 B

131 C (low C) 523 C (high C)

139 C# Db 554 C#, Db

147 D 587 D

156 D#, Eb 622 D#, Eb

165 E 659 E

175 F 698 F

185 F#, Gb 740 F#, Gb

196 G 784 G

208 G#, Ab 831 G#, Ab

220 A (below middle C) 880 A (above high C)
220 A (below middle C) 880 A (above high C)
233 A#, Bb 932 A# Bb

247 B 988 B

262 C (middle C) 1047 C

277 C#, Db 1109 C#, Db

294 D 1175 D

311 D#, Eb 1245 D#, Eb

330 E 1319 E

349 F 1397 F

370 F#, Gb 1480 F#, Gb

392 G 1568 G

415 G#, Ab 1661 G#, Ab

440 A (above middle C) 1760 A

MYARC Extended BASIC Il

Appendix D. Character Sets

SET ASCII CODES SET ASCII CODES
29 0- 7 13 128-135
30 8- 15 14 136-143
31 16- 23 15 144-151
0 24- 31 16 152-159
1 32- 39 17 160-167
2 40- 47 18 168-175
3 48- 55 19 176-183
4 56- 63 20 184-191
5 64- 71 21 192-199
6 72- 79 22 200-207
7 80- 87 23 208-215
8 88- 95 24 216-223
9 96-103 25 224-231
10 104-111 26 232-239
11 112-119 27 240-247
12 120-127 28 248-255

245

TEXAS INSTRUMENTS

HOME COMPUTER

Appendix E. Pattern Identifier Conversion Table

Blocks

Binar y Code
(O=off;1=o0n)

Hexadecimal
Code

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=2 E g |Q |w | |© |o |9 o o | [w |

MYARC Extended BASIC Il

Appendix F. Color Codes

COLOR CODE COLOR
Transparent 1 Medium Red
Black 2 Light Red
Medium Green 3 Dark Yellow
Light Green 4 Light Yellow
Dark Blue 5 Dark Green
Light Blue 6 Magenta
Dark Red 7 Gray

Cyan 8 White

CODE

10
11
12
13
14
15
16

247

TEXAS INSTRUMENTS
HOME COMPUTER

Appendix G. Mathematical Functions

The following mathematical functions may be defined with DEF as shown.

Function

Secant

Cosecant

Cotangent

Inverse Sine

Inverse Cosine

Inverse Secant

Inverse Cosecant

Inverse Cotangent
Hyperbolic Sine

Hyperbolic Cosine
Hyperbolic Tangent
Hyperbolic Secant
Hyperbolic Cosecant
Hyperbolic Cotangent
Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbolic Tangent
Inverse Hyperbolic Secant
Inverse Hyperbolic Cosecant
Inverse Hyperbolic Cotangent

MYARC Extended BASIC II statement

DEF SEC(X)=1/COS(X)

DEF CSC(X)=1/SIN(X)

DEF COT(X)=1/TANX)

DEF ARCSIN(X)=ATN(X/SQR(1-X*X))

DEF ARCCOS(X)=-ATN(X/SQR(1-X*X))+PI/2

DEF ARCSEC(X)=ATN(SQR(X*X-1))+(SGN(X)-1)*PI/2
DEF ARCCSC(X)=ATN(1/SQR(X*X-1))+(SGN(X)-1)*PI/2
DEF ARCCOT(X)=PI/2-ATN(X) or =PI/24+ATN(-X)
DEF SINHX)=(EXP(X)-EXP(-X))/2

DEF COSHX)=(EXP(X)+EXP(-X))/2

DEF TANHX) =-2*EXP(-X)/(EXP(X)+EXP(-X))+1
DEF SECH=2/(EXP(X)+EXP(-X))

DEF CSCH=2/(EXP(X)-EXP(-X))

DEF COTH(X)=2*EXP(-X)/(EXP(X)-EXP(-X))+1

DEF ARCSINH(X)=LOGX+SQR(X*X+1))

DEF ARCCOSH(X)=LOG(X+SQR(X*X-1))

DEF ARCTANHX)=LOG((1+X)/(1-X))/2

DEF ARCSECH((X)=LOG((1+SQR(1-X*X))/X)

DEF ARCCSCHX)=LOG((SGNX)*SQR(X*X+1)+1)/X)
DEF ARCCOTHX)=LOG((X+1)/(X-1))/2

MYARC Extended BASIC Il

Appendix H. List of S peech Words

The following is a list of all the letters, numbers, words, and phrases that can be accessed with CALL SAY
and CALL SPGET. See Appendix I for instructions on adding suffixes to anything in this list.

- (NEGATIVE)
+ (POSITIVE)
. (POINT)

© 00 Otk WO

BYE

C

CAN
CASSETTE
CENTER
CHECK
CHOICE
CLEAR
COLOR
COME
COMES
COMMA
COMMAND
COMPLETE
COMPLETED
COMPUTER
CONNECTED
CONSOLE
CORRECT
COURSE
CYAN

D

DATA
DECIDE
DEVICE

DID
DIFFERENT
DISKETTE
DO

DOES
DOING
DONE
DOUBLE
DOWN
DRAW
DRAWING

E

EACH
EIGHT
EIGHTY

ELEVEN
ELSE
END
ENDS
ENTER
ERROR
EXACTLY
EYE

F
FIFTEEN
FIFTY
FIGURE
FIND
FINE
FINISH
FINISHED
FIRST

FIT

FIVE

FOR
FORTY
FOUR
FOURTEEN
FOURTH
FROM
FRONT

G

GAMES
GET
GETTING
GIVE
GIVES

GO

GOES
GOING
GOOD
GOOD WORK
GOODBYE
GOT
GRAY

249

TEXAS INSTRUMENTS

HOME COMPUTER

GREEN LIKE ORDER
GUESS LIKES OTHER

H LINE OUT

HAD LOAD OVER
HAND LONG P
HANDHELD UNIT LOOK PART

HAS LOOKS PARTNER
HAVE LOWER PARTS
HEAD M PERIOD
HEAR MADE PLAY
HELLO MAGENTA PLAYS
HELP MAKE PLEASE
HERE ME POINT
HIGHER MEAN POSITION
HIT MEMORY POSITIVE
HOME MESSAGE PRESS
HOW MESSAGES PRINT
HUNDRED MIDDLE PRINTER
HURRY MIGHT PROBLEM

I MODULE PROBLEMS
I WIN MORE PROGRAM
IF MOST PUT

IN MOVE PUTTING
INCH MUST Q

INCHES N R
INSTRUCTION NAME RANDOMLY
INSTRUCTIONS NEAR READ (read)
IS NEED READI (red)
IT NEGATIVE READY TO START
J NEXT RECORDER
JOYSTICK NICE TRY RED

JUST NINE REFER

K NINETY REMEMBER
KEY NO RETURN
KEYBOARD NOT REWIND
KNOW NOW RIGHT

L NUMBER ROUND
LARGE 0 S

LARGER OF SAID
LARGEST OFF SAVE

LAST OH SAY
LEARN ON SAYS

LEFT ONE SCREEN
LESS ONLY SECOND
LET OR SEE

MYARC Extended BASIC Il

SEES

SET

SEVEN
SEVENTY
SHAPE
SHAPES
SHIFT
SHORT
SHORTER
SHOULD
SIDE

SIDES

SIX

SIXTY
SMALL
SMALLER
SMALLEST
SO

SOME
SORRY
SPACE
SPACES
SPELL
SQUARE
START
STEP

STOP

SUM
SUPPOSED
SUPPOSED TO
SURE

T

TAKE

TEEN

TELL

TEN

TEXAS INSTRUMENTS
THAN
THAT

THAT IS INCORRECT
THAT IS RIGHT
THE (the)
THEL (th~e)
THEIR
THEN

THERE
THESE
THEY
THING
THINGS
THINK
THIRD
THIRTEEN
THIRTY
THIS
THREE
THREW
THROUGH
TIME

TO
TOGETHER
TONE

TOO

TOP

TRY

TRY AGAIN
TURN
TWELVE
TWENTY
TWO

TYPE

U

UHOH
UNDER
UNDERSTAND
UNTIL

UP

UPPER
USE

\Y%

VARY
VERY

A

WAIT
WANT
WANTS
WAY

WE
WEIGH
WEIGHT

WELL
WERE
WHAT
WHAT WAS THAT
WHEN
WHERE
WHICH
WHITE
WHO
WHY
WILL
WITH
WON
WORD
WORDS
WORK
WORKING
WRITE

X

Y
YELLOW
YES

YET

YOU
YOU WIN
YOUR

Z

ZERO

251

TEXAS INSTRUMENTS
HOME COMPUTER

Appendix I. Addin g Suffixes to S peech Words

This appendix describes how to add ING, S, and ED to any word available in the Solid State Speech™
Synthesizer resident vocabulary.

The code for a word is first read using SPGET. The code consists of a number of characters, one of which
tells the speech unit the length of the word. Then, by means of the subprogram listed here, additional
codes can be added to give the sound of a suffix.

Words often have trailing-off data that make the word sound more natural but prevent the easy addition
of suffixes. In order to add suffixes this trailing-off data must be removed.

The following program allows you to input a word and, by trying different truncation values, make the
suffix sound like a natural part of the word. The subprogram DEFING (lines 1000 through 1130), DEFS1
(lines 2000 through 2100), DEFS2 (lines 3000 through 3090), DEFS3 (lines 4000 through 4120), DEFED1
(lines 5000 through 5070), DEFED2 (lines 6000 through 6110), DEFEDS3 (lines 7000 through 7130), and
MENU (lines 10000 through 10120) should be input separately and saved with the MERGE option. (The
subprogram MENU is the same one used in the illustrative program with SUB.) You may wish to use
different line numbers. Each of these subprogram (except MENU) defines a suffix.

DEFING defines the ING sound. DEFS1 defines the S sound as it occurs at the end of "cats". DEFS2
defines the S sound as it occurs at the end of "cads". DEFS3 defines the S sound as it occurs at the end
of "wishes". DEFEDI1 defines the ED sound as it occurs at the end of "passed". DEFED2 defines the ED
sound as it occurs at the end of "caused". DEFED3 defines the ED sound as it occurs at the end of
"heated".

In running the program, enter a 0 for the truncation value in order to leave the truncation sequence.

100 REM kkkkkkkkkkkkkkkkkkk

110 REM REQUIRES MERGE OF:

120 REM MENU (LINES 10000 THROUGH 10120)
130 REM DEFING (LINES 1000 THROUGH 1130)
140 REM DEFS1 (LINES 2000 THROUGH 2100)
150 REM DEFS2 (LINES 3000 THROUGH 3090)
160 REM DEFS3 (LINES 4000 THROUGH 4120)
170 REM DEFEDL1 (LINES 5000 THROUGH 5070)
180 REM DEFED2 (LINES 6000 THROUGH 6110)
190 REM DEFEDS (LINES 7000 THROUGH 7130)
200 REM *kkkkkkkkkkkkkkhkkkk

210 CALL CLEAR

220 PRINT "THIS PROGRAM IS USED TO"

230 PRINT "FIND THE PROPER TRUNCATION"
240 PRINT "VALUE FOR ADDING SUFFIXES"
250 PRINT "TO SPEECH WORDS.": :

260 FOR DELAY=1 TO 300::NEXT DELAY

270 PRINT "CHOOSE WHICH SUFFIX YOU"

280 PRINT "WISH TO ADD.": :

MYARC Extended BASIC Il

290 FOR DELAY=1 TO 200::NEXT DELAY

300 CALL MENU(8,CHOICE)

310 DATA'ING','S' AS IN CATS,'S' AS IN CADS,'S' AS IN WISHES,
'ED' AS IN PASSED,'ED' AS IN CAUSED,'ED' AS IN HEATED,END
320 IF CHOICE=0 OR CHOICE=8 THEN STOP

330 INPUT "WHAT IS THE WORD? ":WORD$

340 ON CHOICE GOTO 350,370,390,410,430,450,470
350 CALL DEFING(D$)

360 GOTO 480

370 CALL DEFS1(D$)!CATS

380 GOTO 480

390 CALL DEFS2(D$)!CADS

400 GOTO 480

410 CALL DEFS3(D$)!'WISHES

420 GOTO 480

430 CALL DEFED1(D$)!PASSED

440 GOTO 480

450 CALL DEFED2(D$)!CAUSED

460 GOTO 480

470 CALL DEFED3(D$)!HEATED

480 REM TRY VALUES

490 CALL CLEAR

500 INPUT TRUNCATE HOW MANY BYTES? ":L

510 IF L=0 THEN 300

520 CALL SPGET(WORDS$,B$)

530 L=LEN(B$)-L-3

540 C$=SEG$(B$,1,2)&CHR$(L)&SEGS$(B$,4,L)

550 CALL SAY(,C$&DS$)

560 GOTO 500

The data has been given in short DATA statements to make it as easy as possible to input. It may be
consolidated to make the program shorter.

1000 SUB DEFING(A$)

1010 DATA 96,0,52,174,30,65
1020 DATA 21,186,90,247,122,214
1030 DATA 179,95,77,13,202,50
1040 DATA 153,120,117,57,40,248
1050 DATA 133,173,209,25,39,85
1060 DATA 225,54,75,167,29,77
1070 DATA 105,91,44,157,118,180
1080 DATA 169,97,161,117,218,25
1090 DATA 119,184,227,222,249,238,1
1100 RESTORE 1010

1110 A$=""

1120 FOR I=1 TO 55::READ
AA$=AS$&CHRS$(A)::INEXT |

1130 SUBEND

2000 SUB DEFS1(A$)!CATS
2010 DATA 96,0,26

253

TEXAS INSTRUMENTS
HOME COMPUTER

2020 DATA 14,56,130,204,0
2030 DATA 223,177,26,224,103
2040 DATA 85,3,252,106,106
2050 DATA 128,95,44,4,240
2060 DATA 35,11,2,126,16,121
2070 RESTORE 2010

2080 Ag=""

2090 FOR 1=1 TO 29::READ
A:A$=AS&CHRS$(A)::NEXT |
2100 SUBEND

3000 SUB DEFS2(A$)!CADS
3010 DATA 96,0,17

3020 DATA 161,253,158,217
3030 DATA 168,213,198,86,0
3040 DATA 223,153,75,128,0
3050 DATA 95,139,62

3060 RESTORE 3010

3070 Ag=""

3080 FOR I=1 TO 20::READ

A:A$=AS$&CHRS$(A)::NEXT |

3090 SUBEND

4000 SUB DEFS3(A$)!WISHES
4010 DATA 96,0,34

4020 DATA 173,233,33,84,12
4030 DATA 242,205,166,55,173
4040 DATA 93,222,68,197,188
4050 DATA 134,238,123,102
4060 DATA 163,86,27,59,1,124
4070 DATA 103,46,1,2,124,45
4080 DATA 138,129,7

4090 RESTORE 4010

4100 A$=""

4110 FOR I=1 TO 37::READ
A:A$=AS&CHRS$(A)::NEXT I
4120 SUBEND

5000 SUB DEFED1(A$)!PASSED

5010 DATA 96,0,10

5020 DATA 0,224,128,37

5030 DATA 204,37,240,0,0,0

5040 RESTORE 5010

5050 A$=""

5060 FOR I=1 TO 13::READ A::A$=A$&CHRS$(A)::NEXT |
5070 SUBEND

6000 SUB DEFED2(A$)!CAUSED
6010 DATA 96,0,26

6020 DATA 172,163,214,59,35
6030 DATA 109,170,174,68,21

254

MYARC Extended BASIC Il

6040 DATA 22,201,220,250,24
6050 DATA 69,148,162,166,234
6060 DATA 75,84,97,145,204
6070 DATA 15

6080 RESTORE 6010

6090 AS=""

6100 FOR =1 TO 29::READ

A A$=AS&CHRS$(A)::NEXT I
6110 SUBEND

7000 SUB DEFED3(A$)!HEATED
7010 DATA 96,0,36

7020 DATA 173,233,33,84,12
7030 DATA 242,205,166,183
7040 DATA 172,163,214,59,35
7050 DATA 109,170,174,68,21
7060 DATA 22,201,92,250,24
7070 DATA 69,148,162,38,235
7080 DATA 75,84,97,145,204
7090 DATA 178,127

7100 RESTORE 7010

7110 A$=""

7120 FOR 1=1 TO 39::READ A::A$=A$&CHRS$(A)::NEXT |
7130 SUBEND

10000 SUB MENU(COUNT,CHOICE)

10010 CALL CLEAR

10020 IF COUNT>22 THEN PRINT "TOO MANY ITEMS" :: CHOICE=0 :: SUBEXIT
10030 RESTORE

10040 FOR I=1 TO COUNT

10050 READ TEMP$

10060 TEMP$=SEG$(TEMP$,1,25)

10070 DISPLAY AT(l,1):: TEMP$

10080 NEXT |

10090 DISPLAY AT(I+1,1):"YOUR CHOICE: 1"

10100 ACCEPT AT(I+1,14)BEEP VALIDATE(DIGIT)SIZE(-2):CHOICE
10110 IF CHOICE<1 OR CHOICE>COUNT THEN 10100

10120 SUBEND

You can use the subprogram in any program once you have determined the number of bytes to truncate.
The following program uses the subprogram DEFING in lines 1000 through 1130 to have the computer
say the word DRAWING using DRAW plus the suffix ING. Note that it was found that DRAW should be
truncated by 41 characters to produce the most natural sounding DRAWING. The subprogram DEFING
in lines 1000 through 1130 is the program you saved with the merge option.

100 CALL DEFING(ING$)

110 CALL SPGET("DRAW",DRAWS)

120 L=LEN(DRAWS)-3-41! 3 BYTES OF SPEECH OVERHEAD, 41 BYTES TRUNCATED
130 DRAWS$=SEG$(DRAWS,1,2)&CHR$(L)&SEGS(DRAWS,4,L)

140 CALL SAY("WE ARE",DRAWS$&INGS,"A1 SCREEN")

255

TEXAS INSTRUMENTS
HOME COMPUTER

150 GOTO 140

1000 SUB DEFING(A$)

1010 DATA 96,0,52,174,30,65

1020 DATA 21,186,90,247,122,214
1030 DATA 179,95,77,13,202,50

1040 DATA 153,120,117,57,40,248
1050 DATA 133,173,209,25,39,85
1060 DATA 225,54,75,167,29,77

1070 DATA 105,91,44,157,118,180
1080 DATA 169,97,161,117,218,25
1090 DATA 119,184,227,222,249,238,1
1100 RESTORE 1010

1110 A$=""

1120 FOR I=1 TO 55::READ A::A$=A$&CHR$(A)::NEXT |
1130 SUBEND

(Press FCTN 4 to stop the program.)

MYARC Extended BASIC Il

Appendix J. Errors

The following lists all the error messages that MYARC Extended BASIC II gives. The first list is
alphabetical by the message that is given, and the second list is numeric by the number of the error that
is returned by CALL ERR. If the error occurs in the execution of a program, the error message is often
followed by IN line-number.

Sorted b y Message

#

74

Message Descriptions of Possible Errors

BAD ARGUMENT

Bad value given in ASC, ATN, COS, EXP, INT, LOG, SIN, SOUND, SQR, TAN,
or VAL.

An array element specified in a SUB statement.
Bad first parameter or too many parameters in LINK.

BAD LINE NUMBER

Line number less than 1 or greater than 32767.

Omitted line number.

* Line number outside the range 1 through 32767 produced by RES.

ES

BAD SUBSCRIPT
* Use of too large or small subscript in an array.
* Incorrect subscript in DIM.

BAD VALUE
* Incorrect value given in AND, CHAR, CHR$, CLOSE, EOF, FOR, GOSUB,
GOTO, HCHAR, INPUT, MOTION, NOT, OR, POS, PRINT, PRINT USING.
REC, RESTORE, RPT$. SEG$. SIZE, VCHAR or XOR.

Array subscript value greater than 32767.

File number greater than 255 or less than zero.

More than three tones and one noise generator specified in SOUND.

A value passed to a subprogram is not acceptable in the subprogram. For
example, a sprite velocity value less than - 128 or a character value greater than
143.

* Value in ON...GOTO or ON...GOSUB greater than the number of lines given.
* Incorrect position given after the AT clause in ACCEPT or DISPLAY.

CAN'T CONTINUE
* Program has been edited after being stopped by a breakpoint.
Program was not stopped by a breakpoint.

%

257

TEXAS INSTRUMENTS

HOME COMPUTER
69 COMMAND ILLEGAL IN PROGRAM
* BYE, CON, LIST, MERGE, NEW, NUM, OLD, RES, or SAVE used in a program.
84 DATA ERROR
READ or RESTORE with data not present or with a string where a numeric
value is expected.
Line number after RESTORE is higher than the highest line number in the
program.
Error in object file in LOAD.
109 FILE ERROR
* Wrong type of data read with a READ statement.
Attempt to use CLOSE, EOF, INPUT, OPEN, PRINT, PRINT USING, REC, or
RESTORE with a file that does not exist or does not have the proper attributes.
Not enough memory to use a file.
44 FOR NEXT NESTING
The FOR and NEXT statements of loops do not align properly .
Missing NEXT statement.
130 I/O ERROR
* An error was detected in trying to execute CLOSE, DELETE, LOAD, MERGE,
OLD, OPEN, RUN, or SAVE.
* Not enough memory to list a program.
16 ILLEGAL AFTER SUBPROGRAM
Anything but END, REM, or SUB after a SUBEND.
36

IMAGE ERROR

An error was detected in the use of DISPLAY USING, IMAGE, or PRINT
USING.

More than 10 (E-format) or 14 (numeric format) significant digits in the format
string.

IMAGE string is longer than 254 characters.

MYARC Extended BASIC Il

IMPROPERLY USED NAME

* An illegal variable name was used in CALL, DEF, or DIM.

Using a MYARC Extended BASIC II reserved word in LET.

Using a subscripted variable or a string variable in a FOR.

Using an array with the wrong number of dimensions.

Using a variable name differently than originally assigned. A variable can be only
an array, a numeric or string variable, or a user defined function name.
Dimensioning an array twice.

Putting a user defined function name on the left of the equals sign in an
assignment statement.

Using the same variable twice in the parameter list of a SUB statement.

INCORRECT ARGUMENT LIST
* CALL and SUB mismatch of arguments.

INPUT ERROR
* An error was detected in an INPUT.

LINE NOT FOUND

* Incorrect line number found in BREAK, GOSUB, GOTO, ON ERROR, RUN, or
UNBREAK, or after THEN or ELSE.

* Line to be edited not found.

LINE TOO LONG
Line too long to be entered into a program.

MEMORY FULL
* Program too large to execute one of the following: DEF, DELETE, DIM, GOSUB,
LET, LOAD, ON...GOSUB. OPEN, or SUB.

Program too large to add a new line, insert a line, replace a line, or evaluate an
expression.

MISSING SUBEND
* SUBEND missing in a subprogram.

MUST BE IN SUBPROGRAM
SUBEND or SUBEXIT not in a subprogram.

NAME TOO LONG
* More than 15 characters in variable or subprogram name.

NEXT WITHOUT FOR
FOR statement missing, NEXT before FOR, incorrect FOR-NEXT nesting, or
branching into a FOR-NEXT loop.

259

TEXAS INSTRUMENTS
HOME COMPUTER

NO PROGRAM PRESENT
* No program present when issuing a LIST, RESEQUENCE, RESTORE, RUN, or
SAVE command.

NUMERIC OVERFLOW
A number too large or too small resulting from a *, +, -, / operation or in
ACCEPT, ATN, COS. EXP, INPUT. INT, LOG, SIN, SQR, TAN, or VAL.

* A number outside the range - 32768 to 32767 in PEEK or LOAD.

ONLY LEGAL IN A PROGRAM
One of the following statements was used as a command: DEF, GOSUB, GOTO,
IF, IMAGE, INPUT, ON BREAK, ON ERROR, ON...GOSUB, ON...GOTO, ON
WARNING, OPTION BASE, RETURN, SUB, SUBEND, or SUBEXIT.

OPTION BASE ERROR
* OPTION BASE executed more than once, or with a value other than 1 or zero.

PROTECTION VIOLATION
Attempt to save, list, or edit a protected program.

RECURSIVE SUBPROGRAM CALL
* Subprogram calls itself, directly or indirectly.

RETURN WITHOUT GOSUB
RETURN without a GOSUB or an error handled by the previous execution of an
ON ERROR statement.

SPEECH STRING TOO LONG
Speech string returned by SPGET is longer than 255 characters.

STACK OVERFLOW
* Too many sets of parentheses.
Not enough memory to evaluate an expression or assign a value.

STRING TRUNCATED
A string created by RPT$, concatenation ("&" operator), or a user defined
function is longer than 255 characters.

* The length of a string expression in the VALIDATE clause is greater than 254
characters.

MYARC Extended BASIC Il

STRING NUMBER MISMATCH

A string was given where a number was expected or vice versa in a MYARC
Extended BASIC II supplied function or subprogram.

Assigning a string value to a numeric value or vice versa.

Attempting to concatenate ("&" operator) a number.

Using a string as a subscript.

SUBPROGRAM NOT FOUND

A subprogram called does not exist or an assembly language subprogram named
in LINK has not been loaded.

SYNTAX ERROR

An error such as a missing or extra comma or parenthesis, parameters in the
wrong order, missing parameters, missing keyword, misspelled keyword, keyword
in the wrong order, or the like was detected in a MYARC Extended BASIC II
command, statement, function, or subprogram.

DATA or IMAGE not first and only statement on a line.

Items after final ")".

Missing "#" in SPRITE.

Missing ENTER, tail comment symbol (1), or statement separator symbol (::).
Missing THEN after IF.

Missing TO after FOR.

Nothing after CALL, SUB, FOR, THEN, or ELSE.

Two E's in a numeric constant.

Wrong parameter list in a MYARC Extended BASIC II supplied subprogram.
Going into or out of a subprogram with GOTO, GOSUB, ON ERROR, etc.
Calling INIT without the Memory Expansion peripheral attached.

Calling LINK or LOAD without first calling INIT.

Using a constant where a variable is required.

More than seven dimensions in an array.

UNMATCHED QUOTES

Odd number of quotes in an input line.

UNRECOGNIZED CHARACTER

An unrecognized character such as ? or % is not in a quoted string.
A bad field in an object file accessed by LOAD.

261

TEXAS INSTRUMENTS
HOME COMPUTER

Sorted by #

Message

NUMERIC OVERFLOW
SYNTAX ERROR

ILLEGAL AFTER SUBPROGRAM
UNMATCHED QUOTES

NAME TOO LONG
UNRECOGNIZED CHARACTER
STRING NUMBER MISMATCH
OPTION BASE ERROR
IMPROPERLY USED NAME
IMAGE ERROR

MEMORY FULL

STACK OVERFLOW

NEXT WITHOUT FOR
FOR-NEXT NESTING

MUST BE IN SUBPROGRAM
RECURSIVE SUBPROGRAM CALL
MISSING SUBEND

RETURN WITHOUT GOSUB
STRING TRUNCATED

SPEECH STRING TOO LONG
BAD SUBSCRIPT

LINE NOT FOUND

BAD LINE NUMBER

LINE TOO LONG

CAN'T CONTINUE

COMMAND ILLEGAL IN PROGRAM
ONLY LEGAL IN A PROGRAM
BAD ARGUMENT

NO PROGRAM PRESENT

BAD VALUE

INCORRECT ARGUMENT LIST
INPUT ERROR

DATA ERROR

PROTECTION VIOLATION
FILE ERROR

I/O ERROR

SUBPROGRAM NOT FOUND

MYARC Extended BASIC Il

Appendix K. Hi gh-Resolution Mode

In order to stay as compatible as possible with TI Extended BASIC, certain restrictions are in affect when
operating in the High-Resolution Mode. To insure proper execution of your program when programming
in this mode, please refer to the restrictions and conventions listed below.

1.

»o

w

o~

o

o

~

Only one floppy disk file may be kept open at any given time. If you wish to open a different
floppy disk file you must first close any currently open floppy disk file. This restriction does not
apply to other peripherals (RS232, RD, PIO, ... ete.).

Valid character codes extend from character ASCII 0 to 215. Characters 216 to 255 are not
accessible.

Valid character sets accordingly are 0-23. Character sets 24-28 are not accessible.

Sprites function normally in High-Resolution Mode, withs the exception that sprite motion is no
longer available. Attempts to put sprites into motion will have no effect.

ACCEPT and DISPLAY have no effect in High-Resolution Mode.

INPUT, LINPUT, PRINT, and PRINT USING can only be used in file access. Attempting to
display characters on the screen with these commands/statements will have no effect.

WRITE, although somewhat limited, will allow you to display strings on the screen. You may also
use HCHAR or VCHAR for screen displays in the High-Resolution Mode.

263

TEXAS INSTRUMENTS
HOME COMPUTER

6. ADDENDUMS

6.1. Addendum 1. MYARC Extended BASIC Version 2.11

Your patience in waiting for V2.11 has been greatly appreciated. We feel the wait was worth it. In
delivering to you such a fine product for the TI-99/4A. If you are an owner of V2.10 please use this
addendum and disregard the old. Thank you for buying MYARC. We are working hard to keep your trust.

The following is an addendum of features covering V2.11 which are either not correct or are not covered
in the manual. Following the addendum is a technical discussion on the architecture of V2.11 BASIC.
Hopefully, this will, cover all details necessary to program efficiently in both BASIC and 9900 assembly
language.

6.1.1. CLS
Typing in CLS will cause the display to be cleared. CLS is the equivalent of CALL CLEAR.
6.1.2. RUN "FILE-NAME", CONTINUE

Embedded in a program, this command allows you to load and execute a program, while maintaining the
same "variable" values.

6.1.3. PWD — PRINT WORKING DIRECTORY, AND
CHDIR — CHANGE WORKING DIRECTORY

Programmers have found working directories to be useful and convenient. Working directory pertains
to OLD, SAVE, and RUN from the command-mode. When specifying a file, for any of these three
commands, if a period is not specified file name, working directory is prefixed to the file name. Therefore,
if working directory is DSK1. and you specify:

SAVE PROGRAM1
XBII would try to save program in memory to DSK1.PROGRAM1.

Upon power up, working directory is DSK1.. By issuing the CHDIR command, the working directory can
be changed, to any name up to 15 characters.

MYARC Extended BASIC Il

6.1.4. OLD/SAVE/RUN

MYARC XBII uses VDP RAM more extensively (256 characters) than TI Extended Basic (114 characters).
Therefore, when saving a Basic program, XBII will switch to Internal/Variable 254 format sooner than
TI Extended Basic, because of less available VDP RAM.

In order to load all TI Extended Basic programs, in program image format, XBII may use the character
definition table of VDP RAM as loadspace. The characters on the display will momentarily become
undefined, but will be restored immediately after the program has been loaded. To prevent characters
from being redefined in the future, perform a save after the program has been loaded.

MYARCXBII will automatically convert the format to Internal/Variable 254, usable by both TI Extended
Basic and MYARC XBII. Because of the extra space available given by using the character definition
table, MYARC XBII is able to load some T1I Basic programs that TI Extended Basic was not able to load.
6.1.5. SIZE

The SIZE command will display the amount of program, variable, and string space available to the
program.

6.1.6. FREESPACE

The FREESPACE command has been replaced by the SIZE command which provides more and better
information covering memory utilization.

6.1.7. LIST

Please use the following commands in place of those in the manual:

LIST X- Replaced by LIST X,E or LISTXE
LIST X-Y Replaced by LIST X,)Y or LISTXY
LIST -X Replaced by LIST 1,X or LIST1X

6.1.8. MARGINS

In High-Resolution Mode, margins have little value in BASIC and therefore are not supported in this
mode.

Because XBII uses windows to present information, you may find a program or two that assume scrolling
to occur in columns 1, 2 and 31 and 32. This will not happen. It works as TI defined it to operate on their
own 9918.

265

TEXAS INSTRUMENTS
HOME COMPUTER

6.1.9. REAL

Version 2.11 supports both INTEGER and REAL NUMBERS. However, the variable definition name for
REAL types has been changed from REAL to DEFREAL.

6.1.10. RECTANGLE

Version 2.11 supports all modes of drawing pure vertical and horizontal shapes. In addition, general
purpose parallelograms are supported in the TYPE 1 mode (i.e., drawing the perimeter).

6.1.11. FILL
Optional character pattern is not supported in V2.11.
6.1.12. GRAPHICS(3) MODE

When entering Graphics(3) mode, all available VDP RAM is needed, including some of the area normally
used by the floppy disk controller. Therefore, upon invoking Graphics(3) mode, XBII will close all files
and perform a "CALL FILES(1)". In this mode, only one floppy disk file can be open at a time. Another
consideration must be given when using Graphics(3) mode, that of running other programs. Because all
available VDP RAM is used for display, only loading of Internal/Variable 254 program files are allowed.
In order to save a program in Internal/Variable 254 format, just issue the command:

SAVE "DSKX.PGMNAME",INTERNAL.

6.1.13. | P+, I P-, I P*

TI Extended Basic supports the commands ! P+ and ! P- to speed up program prescan. MYARC XBII also
supports these and has an additional command of ! P*. This new command stops prescan altogether. It
differs from ! P- in that ! P- allows syntax checking to continue, whereas with ! P*, it does not. Because
the new command stops prescan entirely at that point, it speeds program start-up time considerably. At
the same token, EXTREME CARE must be taken when using this capability.

6.1.14. CALL SAY

When using CALL SAY, the computer will spell any alpha word string that is not in the library and say
"UHOH" if the word string is non alphanumeric.

6.1.15. DEF

The DEF function can only support one and not multiple parameters.

MYARC Extended BASIC Il

6.1.16. RUN and OLD

The RUN and OLD command's cannot accept D/V80 format files. These are enhancements for the new
MYARC Advanced BASIC for the TI-99/4A compatible 9640 computer.

6.1.17. Extended BASIC || RAM Usa ge

The following three diagrams depict memory usage of both CPU and VDP RAM by XBII.

6.1.17.1. EXTENDED BASIC Il CRAM MAP

I I i v
>2000 UNUSED RAM DISK VDP/SPEECH BASIC
-------------------------- ROUTINES INTRP
USER ASSM BASIC | semeememeeees | e
>4000 LANG AREA INTRP I/0 BUFFERS VALUE STACK
>6000
MEMORY MANAGEMENT ROUTINES
>8000
>A000
BASIC VARIABLE STRING BASIC
PROGRAM SPACE SPACE INTRP
>FFES8

267

TEXAS INSTRUMENTS
HOME COMPUTER

6.1.17.2. EXTENDED BASIC Il VRAM MAP

PATTERN MODE TEXT MODE BITMAP MODE
>0 SIT 0 >0 SIT 0 >0 PDT 0
>2FF 767
>300 SAL 768
>37F 895
>380 cT 896
>39F 927
>3A0 EMPTY 928
>3BF 959
>3C0 EMPTY 960
>7FF 2047 | S7FF 2047
>800 PDT/SDT 2048 | >800 PDT 2048
SFFF 4095 | >FFF 4095
>1000 EMPTY 4096 | >1000 EMPTY 4096
>17FF 6143
>1800 SDT 6144
>1EBF 216 CHARs 7871
>1ECO SOUND 7872
>1EC8 LIST 7880
>1EC9 311BYTES 7881
FOR PAB
FILE DESCRIPTOR
>1FFF 305 NEEDED 8191
>37D7 14295 | >37D7 14295
>2000 cT 8192
>37D8 RESERVED 14196| >37D8 RESERVED 14196 >37FF
>3800 SIT
BLOCKS FOR BLOCKS FOR >3AFF
FLOPPY DSR FLOPPY DSR
>3B00 SAL
3FILES 3FILES >3AFF
NORMAL PWR-UP NORMAL PWR-UP
MODE MODE >3B80 EMPTY
>3BE3
>3BE4 BLOCKS
FOR DSR
>3FFF >3FFF >3FFF 1FILE

MYARC Extended BASIC Il

6.1.17.3. EXTENDED BASIC Il VREG MAP

VDP VREG VREG VREG VREG VREG VREG VREG VREG SPR
REGS 0 1 2 3 4 5 6 7 MOTN
GRAPHICS | MODE MODE SIT CT PDT SAL SDT SIT SMT
(@>7A5C)
PATTERN >00 >EO0 >00 >0E >01 >06 >01 >17 XXXXX
>0000 >0380 >0800 >0300 >0800 BLK/ >7A5C
CY
TEXT >00 >F0 >00 >0F >01 >XX >XX >17
>0000 >03C0 | >0800 >XXXX >XXXX BLK/ -
CcY
BITMAP >02 >EO0 >0E >FF >03 >76 >03 >17 XXXXX
>3800 >2000 >0000 >3B00 | >1800 BLK/ >7A5C
CY

6.1.18. ASSEMBLY LANGUAGE USAGE

As the CPU RAM usage depicts, a little over 1K-bytes of RAM is wasted in order to load assembly
language programs at the exact same locations as TT XB. In order to use this extra area, immediately
perform a CALL LOAD(8194,32,130) after your CALL INIT.

6.1.19. ASSEMBLY LANGUAGE SUPPORT

All assembly language support routines listed on pages 415-416 of the Editor/Assembler manual are
supported except for the routines dealing with manipulation of data in VDP RAM.

These routines are next, COMPCT, GETSTR, MEMCHK, VPUSH, VPOP, ASSGNV, VGWITE, GVWITE.
If these routines are invoked using an XML, they will return as a NO-OP. The reason for not allowing
the user to invoke these routines (even though they are within XBII) is because no VDP RAM contains
no data to be manipulated. All data is stored in CPU RAM, and therefore there is no need for these
routines. A description of these routines is given in Chapter 17 in the E/A manual.

In addition, the assembly language loader in XBII is similar to that of the E/A Loader, in that compressed
as well as non-compressed object code can be loaded. The following symbols are also predefined and can
be used in your software by using the REF directive: PAD, GPLWS, SOUND, VDPRD, VDPSTA,
VDPWD, VDPWA, SPCHRD, SPCHWT, GRMRD, GRMRA, GRMWD, GRMWA, SCAN, XMLLNK,
KSCAN, VSBW, VSBR, VMBW, VMBR, VWTR, DSRLNK, LOADER, NUMASG, NUMREF, STRASG,
STRREF.

269

TEXAS INSTRUMENTS
HOME COMPUTER

As another enhancement, as the XBII manual states on page 136, when a "TYPE 5" assembly language
program is used in an OLD or RUN statement, the program is loaded and executed immediately. Lastly,
V2.11 supports all the returns given in section 24.11 in the E/A manual. However, if the alternate return
as given in section 24.11.3 is used, the word in memory location 1/2-8300 should not be altered, as it
contains a return linkage to XBII.

6.1.20. UTILITIES AND DEMONSTRATION PROGRAM
In addition, two new utilities and a demonstration program have been added.

The first utility is file name "128KOSN". The file differs from 128KOS in that it attempts to determine
if XBII files 1-6 have already been loaded and therefore will only load "XBII7". This means that if you
keep power on the RAM DISK and keep it in the 128K CPU RAM mode, you only need to load "XBII7"
once. You can go into and out of XBII from then on by only loading XBII7. This of course makes load time

almost seven times faster. To use this capability you must rename file "128KOS" to something like
"128KOSOLD" and rename "128KOSN" to "128KOS". You are now set.

The second utility is "TIVDP". This utility has been developed to solve some of the problems involving
compatibility with loading assembly language from XB. The utility causes VDP RAM and VDP registers
to be the same as used in TI XB. To invoke this utility a program statement should be as follows:

CALL INIT::CALL LOAD("DSK1.TIVDP")::CALL INIT

This will cause the screen to go blank and therefore should be used in a running program. To return VDP
RAM and registers to XBII mode, simply type "NEW" and ENTER.

The demo program is called DEMO3M and shows some of the capabilities of XBII. To run it, type
RUN DSK1.DEMO3M.

MYARC Extended BASIC Il

6.2. Addendum 2. EPROM Installation Instructions

DEAR VALUED CUSTOMER:

ENCLOSED FIND YOUR UPDATED EPROM REPLACEMENT, ASREQUESTED. PLEASE RETURN
THE OUTDATED EPROM TO US, ASAP. AS YOU KNOW, OUR CURRENT COMPANY POLICY IS
TO SUPPLY UPDATED EPROMS AT NO CHARGE. YOUR CO-OPERATION IN RETURNING
EPROMS, WILL ENABLE US TO CONTINUE TO SUPPLY SUBSEQUENT EPROM UPDATES,
WITHOUT CHANGE IN OUR COMPANY POLICY.

1.

2.

w

~

Shutdown the console, PEB, and all other peripherals connected to your system.

Wait at least 2 minutes for power discharge, remove the PEB cover and lift out your MYARC card
from the PEB.

The card is opened by separating the two "clamshell" halves at the edge OPPOSITE to the edge
with the MYARC label. Note the two plastic catches at BOTH ends of this separation edge which
lock the two clamshells together. You will need to depress BOTH catches, first at one end and
then at the other end of the separation edge.

The separation is best done using a medium size screwdriver (1/4 to 3/8" wide) to depress each
catch INWARD while simultaneously pushing apart the two clamshells at that end. At each end,
start with the outer catch first.

After separation, lay the two halves on a table. The back side or the circuit board will be exposed.

The two clamshells are NOT identical — note which clamshell holds the circuit board and the
orientation of the board in that clamshell.

Holding it by the edges, lift out the circuit board and place it on a protected surface, back-side
DOWN and card-edge connector contacts TOWARDS you.

271

TEXAS INSTRUMENTS
HOME COMPUTER

6.2.1. REMOVING EPROM FROM CIRCUIT BOARD

5.

o

The EPROM is a large 28-pln IC and is located in the bottom right-hand quadrant of the board
(nearest you) at location marked U _. The EPROM is further recognized by a small label affixed
over and covering the window in the center of the EPROM.

*Note that the notch on the EPROM lines up with the drawing of a notch on the circuit
board next to it.

To avoid bent or broken pins etc., extreme care must be used in removing the EPROM from its
socket. Unless you're using a 28-pln IC remover, insert a small screwdriver end (up to 1/4" wide)
first at one end, between the EPROM and the socket and GENTLY pry up that end of the
EPROM a slight amount. At the other end, similarly place the screwdriver between the EPROM
and the socket and then gently prying up that end about the some amount. Repeat the process
alternately at each end so that the EPROM lifts up uniformly and easily from its socket.

6.2.2. INSERTING THE REPLACEMENT EPROM

®

7. After removing the new EPROM from its packing, orient it in the same direction that the old

EPROM had been socketed.

WARNING: The EPROM will be irreparably damaged if inserted in the wrong direction and
powered up.

Align all 28 pins of the EPROM into the 28 (rectangular) holes of the socket in the board. To get
good alignment it may be necessary to adjust the EPROM pins, generally by carefully pressing
them inward (towards the center) or otherwise as required, so that all 28 pins are well aligned
to slide easily into the socket holes. Before pressing down, check again that all 28 pins are
properly aligned over the 28 socket holes.

MYARC Extended BASIC Il

6.2.3. REPLACING THE CIRCUIT BOARD INTO THE CLAMSHELLS

10. Reversing the removal procedure, replace the circuit board, back-side up, into the proper
clamshell. Adjust the circuit board so that two holes in the board fit over and into, the two
supports protruding up from the clamshell.

11. Orient the other clamshell over the board. The card edge opening in the upper clamshell must
be over the card edge connector of the circuit board and the small opening in the upper clamshell
for the LED (lamp) must align with the LED on the circuit board.

12. Interlock the two small plastic hinges at the label-edge of the clamshells and then firmly push
together each end at the separator edge. The plastic catches should snap into place with applied
firm pressure.

13. Reinsert your MYARC card into your PEB and replace the PEB cover before system startup.

14. Please replace the old EPROM into its packing material and return it to MYARC, Inc., P.O. Box
140, Basking Ridge, NJ 07920.

6.2.4. NOTICE

THE SOFTWARE CONTAINED IN THE MYARC EPROM IS COPYRIGHTED BY MYARC AND MAY
NOT BE COPIED OR DUPLICATED IN WHOLE OR IN PART FOR ANY REASON WHATSOEVER.

ATTEMPTS TO COPY OR TAMPER WITH THE MYARC EPROM ELECTRONICALLY OR
OTHERWISE WILL PERMANENTLY DAMAGE THE EPROM.

EPROMs THAT HAVE BEEN DAMAGED DUE TO SUCH TAMPERING ARE NOT COVERED BY
WARRANTY AND WILL NOT BE REPLACED BY MYARC.

273

TEXAS INSTRUMENTS
HOME COMPUTER

7. SERVICE INFORMATION

7.1. In Case of Difficult y

If MYARC Extended BASIC II does not appear to be working properly, check the following:

1.

»o

w

~

Did you insert a high-quality Memory Expansion Card with a minimum of 128 Kbytes of RAM
storage into your peripheral expansion box, AND did you ALSO REMOVE the 32K Memory
Expansion Card from the PEB?

To use MYARC Extended BASIC II in your 99/4A:
You MUST have 128 Kbytes minimum of memory expansion.
AND

You MUST NOT have a 32K Memory Expansion Card in the PEB together with the
larger capacity Memory Expansion Card.

Power — Be sure all devices are plugged in. Then turn on the power to the units in the proper
sequence: Peripheral devices first (if you have them), followed by the console and monitor.

Connector Separation — Check for proper alignment of the console and any accessory devices
such as the Disk Drive Controller, Speech Synthesizer, and RS232 Interface. Remove and reinsert
the MYARC Extended BASIC II module.

If none of the above procedures corrects the difficulty, consult "If You Have Questions or Need
Assistance" or see the "Service Information" portion of the User's Reference Guide that came with
your computer.

MYARC Extended BASIC Il

7.2. If You Have Questions or Need Assistance

If you have questions concerning MYARC Extended BASIC II operation or repair, contact first the dealer
from whom you purchased the equipment.

Your dealer will be able to quickly answer most questions. If your dealer doesn't have an immediate
answer, the dealer will either contact MYARC or suggest you contact us directly by mail or phone.

Our address and telephone number are:
MYARC, INC.
P. 0. BOX 140

Basking Ridge, NJ 07920
(201)766-1701

Please Note: This telephone number is not a toll-free number and collect calls cannot be accepted.

275

TEXAS INSTRUMENTS
HOME COMPUTER

8. 90-DAY LIMITED WARRANTY

THIS MYARC EXTENDED BASIC II WARRANTY EXTENDS TO THE ORIGINAL CONSUMER
PURCHASER OF THE ACCESSORY.

8.1. Warrant y Duration

This MYARC Extended BASIC Il module is warranted for a period of 90 days from the date of the original
purchase by the consumer.

8.2. Warranty Coverage

This MYARC Extended BASIC II module is warranted against defective materials or workmanship. THIS
WARRANTY IS VOID IF THE ACCESSORY HAS BEEN DAMAGED BY ACCIDENT,
UNREASONABLE USE, NEGLECT, IMPROPER SERVICE OR OTHER CAUSES NOT ARISING OUT
OF DEFECTS IN MATERIALS OR WORKMANSHIP.

8.3. Warranty Disclaimers

ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE 90-DAY PERIOD. MYARC SHALL NOT
BE LIABLE FOR LOSS OF USE OF THE HARDWARE OR OTHER INCIDENTAL OR
CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY
OTHER USER.

Some states do not allow the exclusion or limitation of implied warranties or consequential damages, so
the above limitations or exclusions may not apply to you in those states.

8.4. Legal Remedies

This warranty gives you specific legal rights, and you may also have other rights that vary from state to
state.

MYARC Extended BASIC Il

8.5. Warranty Performance

During the above 90-day warranty period, your MYARC Extended BASIC II module will be repaired or
replaced with a new or reconditioned unit of the same or equivalent model (at MYARC's option) when
return is authorized by MYARC and the unit is returned by prepaid shipment to MYARC, INC. at the
address shown below. The repaired or replacement unit will be warranted for 90 days from date of repair
or replacement.

Other than the shipping requirement, no charge will be made for the repair or replacement of
in-warranty units.

SHIPPING INSTRUCTIONS: If you believe that your unit requires servicing, please contact MYARC
before you return your unit. We will try to analyse and may be able to solve your problem without need
of returning the unit. Please obtain a Return Authorization number from us before you ship the unit
back.

MYARC strongly recommends that you insure the unit for value, prior to shipment.
MYARC's ADDRESS:
MYARC, INC.

241 Madisonville Road
Basking Ridge, NJ 07920

277

TEXAS INSTRUMENTS
HOME COMPUTER

Statement of File Ori gin
This file was created for users of PC99, a TI-99/4A emulator running on an IBM PC.

"Lou Phillips, former chief executive officer of Myarc Incorporated of Basking Ridge, NdJ
has granted the PC99 developers permission to reproduce the manual originally supplied
with the MYARC Extended BASIC II package. The developers of PC99 acknowledge their
thanks for this generous offer."

While every effort was made to ensure that the text and graphics content of this file are an accurate copy
of the original Myarc manual, CaDD Electronics can assume no responsibility for any errors introduced
during scanning, editing, or conversion.

If you find an error, we will attempt to correct it and provide you with an updated file. You can contact
us at:

CaDD Electronics
45 Centerville Drive
Salem, NH 03079-2674

Version 971030

